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Treasure Box

Treasure Box

I would recommend you an important reference on a deep
introduction of stochastic analysis tools:

Figure: A Magic Book on Stochastic Analysis

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 4 / 291



Stochastic Differential Equations

Course Outline

1 Treasure Box

2 Stochastic Differential Equations
Well-Posedness of SDEs
Examples for SDEs
Yamada-Watanabe SDEs
Linear Continuous Markov Processes
Feller’s Boundary Classification

3 Feynman-Kac Formula

4 Fokker-Planck-Kolmogorov Equations

5 Propagation of Chaos

6 Replicator-Mutator Equations

7 Mean Field Games

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 5 / 291



Stochastic Differential Equations Well-Posedness of SDEs

Well-Posedness for SDEs I

Let D ⊆ Rn be a domain, i.e., an open connected subset of Rn

Consider functions b : D → Rn×1 and σ : D → Rn×m

Filtered probability space (Ω,F ,F,P) with the filtration
F = (Ft)t∈[0,T ] satisfying the usual conditions
Let W = (Wt)t∈[0,T ] be an m-dimensional (P,F)-Brownian motion
An Itô SDE can be described as: for (t, x) ∈ [0,T ]× D,

X x
t = x +

∫ t

0
b(X x

s )ds︸ ︷︷ ︸
FV part

+

∫ t

0
σ(X x

s )dWs︸ ︷︷ ︸
Itô stoch. integral

(1)

Let D = Rn. Assumption on (b, σ):
(Alip) b : Rn → Rn×1 and σ : Rn → Rn×m are Lipschitiz continuous with

linear growth.
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Stochastic Differential Equations Well-Posedness of SDEs

Well-Posedness for SDEs II

Let FW be the filtration generated by Brownain motion W
Then, the existence and uniqueness of strong solutions of SDE is
given by:

Theorem (Well-posedness of SDEs with Strong Solutions I)

Let (Alip) be satisfied. Then, for any T > 0, there exists a unique
FW -adapted, continuous solution X x = (X x

t )t∈[0,T ] satisfying

‖X x‖pT := E
[

sup
t∈[0,T ]

|X x
t |

p
]
< +∞, p ≥ 1.

Proof. For p ≥ 1, let X p
x be the set of FW -adapted, continuous

processes X = (Xt)t∈[0,T ] with X0 = x satisfying ‖X‖T < +∞.
Then (X p

x , ‖ · ‖T ) is a Banach space.
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Stochastic Differential Equations Well-Posedness of SDEs

Well-Posedness for SDEs III

Define a mapping T on X p
x as: for any X ∈ X p

x ,

(TX )t := x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs , t ∈ [0,T ].

Clearly, (TX )0 = x and t → (TX )t is continuous using the continuity
of stochastic integrals. Using Itô formula, the linear growth condition
of (b, σ), BDG inequality and Grownall’s lemma, ‖TX‖pT < +∞.
Hence TX ∈ X p

x .
For any X ,Y ∈ X p

x , using the assumption (Alip) and the similar
argument above, we have

‖TX − TY ‖T ≤ CT ,p‖X − Y ‖T ,

where CT ,p is a positive constant such that T → CT ,p is a non-
decreasing function satisfying limT↓0 CT ,p = 0.
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Stochastic Differential Equations Well-Posedness of SDEs

Well-Posedness for SDEs IV

Choose T = t0 small enough such that CT ,p < 1, we have a unique
fixed point X ∗ = TX ∗ on [0, t0].
Since CT ,p depends on T , p only, we can divide [0,T ] into infinitely
many small time intervals. In each small interval, we have a unique
fixed point and fit them together on [0,T ].
The proof of Theorem 1 is complete.
In many cases, (b, σ) may be not globally Lipschitz continuous
We impose the following conditions:

(Aloc) b : Rn → Rn×1 and σ : Rn → Rn×n are locally Lipschitz continuous.
Remark: (Aloc) implies the pathwise uniqueness of SDE.

(ALyn) There exists a function V : Rn → R+ satisfying
(i) Let qR := inf|x|>R V (x), then limR→∞ qR = +∞;
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Stochastic Differential Equations Well-Posedness of SDEs

Well-Posedness for SDEs V

(ii) There exists a constant C > 0 such that, for all t ∈ [0,T ],

E [V (X x
t∧τR )] ≤ V (x) + C

∫ t

0
(1 + E [V (X x

s∧τR )])ds.

Here τR := inf{t ∈ [0,T ]; |X x
t | ≥ R} and τR = T if the set is empty.

Theorem (Well-posedness of SDEs with Strong Solutions II)

Let assumptions (Aloc) and (ALyn) be satisfied. Then, for any T > 0,
there exists a unique FW -adapted, continuous solution of SDE (1).

Proof. By Theorem 1, using the assumption (Aloc), we have, for any
t ∈ [0,T ] and R > 0, SDE (1) has a unique continuous strong
solution on [0, t ∧ τR ].
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Stochastic Differential Equations Well-Posedness of SDEs

Well-Posedness for SDEs VI

We prove τR → T as R →∞. In fact, by the condition (ii) of
(ALyn), we have, for all t ∈ [0,T ],

E [V (X x
t∧τR )] ≤ eCt(1 + V (x)).

Therefore, for all t ∈ [0,T ], and R > 0,

P(τR < t) ≤ 1
qR

E [1τR<tV (XτR )] =
1
qR

E [1τR<tV (Xt∧τR )]

≤ eCt

qR
(1 + V (x)).

This yields that P(τR < t)→ 0 as R →∞, using the condition (i) of
(ALyn).
Then, the proof of Theorem 2 is complete.
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Stochastic Differential Equations Well-Posedness of SDEs

Well-Posedness for SDEs VII

Question: Let conditions of Theorem 1 hold and Z = (Zt)t∈[0,T ] an
m-dimensional continuous semimartingale. Prove that the following
SDE:

X x
t = x +

∫ t

0
σ(X x

s )dZs , t ∈ [0,T ],

admits a unique FZ -adapted, continuous solution for x ∈ Rn.
Hints: Consider the canonical decomposition of the continuous
semimartingale Z given by Z = M + A, where M ∈Mloc and A ∈ V

Firstly, consider dA << dt and d [M,M] << dt
Secondly, consider using the time change
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs I

Linear SDE. A general linear SDE can be written as:

Xt = Yt +

∫ t

0
XsdZs , t ∈ [0,T ], (2)

where both Y = (Yt)t∈[0,T ] and Z = (Zt)t∈[0,T ] are one-dimensional
continuous semimartingales

Lemma (Closed-Form of Solutions of Linear SDE)

The linear SDE (2) admits a closed-form solution given by

Xt = E(Z )t

(
Y0 +

∫ t

0
E(Z )−1s (dYs − d [Y ,Z ]s)

)
,

where E(Z ) is Doléans-Dade exponential of the semimartingale Z .
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs II

Proof. Let us first consider the simple linear case:

X 1
t = 1 +

∫ t

0
X 1

s dZs , t ∈ [0,T ].

Then, the solution is Doléans-Dade exponential of Z , i.e., X 1
t = E(Z )t

Question: Write the expression of E(Z ).
Consider the solution of the linear SDE admitting the form:

Xt = X 1
t Lt , t ∈ [0,T ], (3)

where L = (Lt)t∈[0,T ] is a continuous semimartingale with L0 = Y0.
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs III

By integration by parts, we have

dXt = d(X 1
t Lt) = LtdX 1

t + X 1
t dLt + d [X 1, L]t

= X 1
t LtdZt + X 1

t dLt + d [X 1, L]t

= XtdZt + X 1
t dLt + d [X 1, L]t

Compare it with (2), i.e., dXt = XtdZt + dYt , we obtain

dYt = X 1
t dLt + d [X 1, L]t , L0 = Y0.

This gives that

dLt = (X 1
t )−1dYt − (X 1

t )−1d [X 1, L]t︸ ︷︷ ︸
FV part of L

, L0 = Y0. (4)
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs IV

Therefore, it holds that

d [X 1, L]t = d
[∫ ·

0
X 1

s dZs ,
∫ ·
0

(X 1
s )−1dYs

]
t

= d [Y ,Z ]t .

Using (4), we get

dLt = (X 1
t )−1(dYt − d [Y ,Z ]t) = E(Z )−1t (dYt − d [Y ,Z ]t)

L0 = Y0.

Then, we arrive at

Lt = Y0 +

∫ t

0
E(Z )−1s (dYs − d [Y ,Z ]s), t ∈ [0,T ].

Thus, the proof of Lemma 3 is complete.
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs V

The above linear SDE includes many important examples of
stochastic models in practice
Let W = (Wt)t∈[0,T ] be a scalar Brownian motion, i.e., m = 1
Ornstein-Uhlenbeck (OU) process. The OU process can be described
as follows: for x ∈ R,

X x
t = x +

∫ t

0
α(β − X x

s )ds + σWt , t ∈ [0,T ]

where α, σ > 0 and β ∈ R.
OU process is a class of important stochastic models in physics
(Langevin Equation) and finance (Vasicek Model)
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs VI

The discretization of OU processes is a AR(1) model: for β = 0,

dX x
t = −αX x

t dt + σdWt

X x
t+1 − X x

t = −αX x
t + σ(Wt+1 −Wt)

X x
t+1 = (1− α)X x

t + ξ, ξ ∼ N(0, σ2)

The OU admits a closed-form solution:

X x
t = xe−αt + β(1− e−αt) +

∫ t

0
σeα(s−t)dWs

The OU process is both continuous Gaussian process and
semimartingale:

Mean function:
E [X x

t ] = xe−αt + β(1− e−αt).

OU process is mean-reverting since limt→∞ E [X x
t ] = β ∈ R.
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs VII
Covariance function:

Cov(X x
t ,X x

s ) =
σ2

2α

(
e−α(t−s) − e−α(t+s)

)
.

The sample paths of OU-processes show a mean-reverting property:

Figure: Sample path of OU processes
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs VIII

Questions: Provide an example which is a continuous Gaussian
process, but not a semimartingale
Langevin equation. dVt = −αVtdt + dWt . The closed-form solution
is given by

Vt = e−αt
(
V0 +

∫ t

0
eαsdWs

)
∫ t
0 Vsds: it is used by physicists as a model of physical Brownian
motion
Recently, Langevin equation and its variation are used to improve the
performance of SGD algorithm in Machine Learning and Non-Convex
Optimization Problem.

Paul Langevin (1872-1946): French physicist, Student of French
physicist Pierre Curie (1859-1906):
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs IX

Figure: Left: Hendrik Antoon Lorentz (1853-1928); Middle: Albert Einstein
(1879-1955); Right: P. Langevin
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs X

Geometric Brownian motion. dSt = µStdt + σStdWt ,
S0 = x ∈ D = (0,∞).
The GBM admits a closed-form solution given by

St = x exp
(∫ t

0
(µ− σ2

2 )ds + σWt

)
= xeµtE(σW )t

In mathematical finance, GBM is called continuous time
Black-Scholes stock model.
Myron Samuel Scholes (1941-): Canadian-American financial
economist, Frank E. Buck Professor of Finance, Emeritus, at the
Stanford Graduate School of Business, 1997 Nobel Prize Winner in
Economics:
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs XI

Figure: Left: Robert C. Merton (1944-); Right: M. Scholes
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs XII

The discretization of BS model has a well-known explanation in
finance:

Sti+1 − Sti

Sti︸ ︷︷ ︸
Stock Return

= µ∆ti + σξi︸ ︷︷ ︸
Return+Vol. Risk

, ξi := W∆ti ∼ N(0,∆ti )

where ∆ti := ti+1 − ti
Inhomogeneous GBM. dXt = (θ − aXt)dt + σXtdWt

It is also referred to GARCH model (see Lewis (2000))
Question: Write the closed-form solution of GARCH model.
Inverse GARCH model. dXt = (θ − aXt)Xtdt + σXtdWt where
a, σ > 0 and θ > σ2
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs XIII

Question: In the above Inverse GARCH model, note that
b(x) := (θ − ax)x is only locally Lipschitz continuous. Prove the
existence and uniqueness of strong solutions of the above SDE.
Question: Let Yt = (Xt)−1 with Xt is the above inverse GARCH
model. Then Yt is an GARCH model. This is the reason why we call
X an inverse GARCH model.
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Stochastic Differential Equations Yamada-Watanabe SDEs

Yamada-Watanabe SDEs I

We now let W = (Wt)t∈[0,T ] be a scalar Brownian motion.
We consider an example introduced by Itô and Watanabe (1978):

Xt =

∫ t

0
3X

1
3s ds +

∫ t

0
3X

2
3s dWs .

Then Xt = 0 and Xt = W 3
t are two different solutions, i.e.,

uniqueness does not hold.
The coefficients b(x) = 3x 1

3 and σ(x) = 3x 2
3 , although continuous in

x , are not smooth at x = 0. They are not locally Lipschitz continuous.
The continuously differentiable functions are locally Lipschitz
continuous. However, f (x) = |x | is locally Lipschitz but not
continuously differentiable.
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Stochastic Differential Equations Yamada-Watanabe SDEs

Yamada-Watanabe SDEs II

Consider the Lipschitz continuous function b : R→ R satisfying
b(0) ≥ 0.

Lemma (Well-posedness of Yamada-Watanabe SDEs)

Let p ≥ 1
2 . For x , σ > 0, the following one-dimensional SDE:

X x
t = x +

∫ t

0
b(Xs)ds + σ

∫ t

0
(Xs)pdWs , t ∈ [0,T ]

admits a unique (nonnegative) strong solution.

Proof. This is a corollary of Yamada and Watanabe (1971).
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Stochastic Differential Equations Yamada-Watanabe SDEs

Yamada-Watanabe SDEs III

Let ρ(x) = σxp for x ≥ 0 and p ≥ 1
2 . Then, ρ : R+ → R+ is a

strictly increasing function with ρ(0) = 0 and∫
(0,ε)

ρ−2(x)dx = +∞, for all ε > 0 (5)

Verify the existence of weak solution of above SDE via martingale
problems of Stroock and Varadhan (1969)
Prove the pathwise uniqueness of the above SDE by introducing a
sequence of auxiliary C2-functions:

By (5), there exists a sequence of strictly decreasing (ak)k≥1 ⊂ (0, 1]
s.t. a0 = 1, a∞ = 0, and∫ ak−1

ak

ρ−2(x)dx = k, ∀ k ≥ 1.
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Stochastic Differential Equations Yamada-Watanabe SDEs

Yamada-Watanabe SDEs IV
For each k ≥ 1, construct a C(R)-probability density function ρk with
support (ak , ak−1) satisfying 0 ≤ ρk(x) ≤ 2

kρ2(x)
for all x > 0.

Define a sequence of auxiliary C2-functions by: for k ≥ 1,

ψk(x) :=

∫ |x |
0

∫ y

0
ρk(s)dsdy , x ∈ R. (6)

Then, |ψ′k(x)| ≤ 1, limk→∞ ψk(x) = |x | for x ∈ R, and (ψk)k≥1 is
nondecreasing.
We can verify the nonegativity of the solution by using the comparison
theorem of SDE or the theory of linear continuous Markov processes.
Question: Prove that the following estimate holds, for x1, x2 > 0,

E [|X x1
t − X x2

t |] ≤ |x1 − x2|+ LbE
[∫ t

0
|X x1

s − X x2
s | ds

]
, (7)

where Lb is the Lipschitz coefficient of the drift x → b(x).
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Stochastic Differential Equations Linear Continuous Markov Processes

Linear Continuous Markov Processes I

We here discuss a class of continuous and strong Markov processes
X = (Xt)t≥0 whose state space I = (`, r) which is an open, closed or
semi-open interval of R.
We assume that the death-time ζ is ∞, a.s., i.e., P(ζ <∞) = 0.
Let the linear continuous Markov process (LCMP) X be regular, i.e.,
for any x ∈ int(I) = (`, r) and y ∈ I,

Px (Ty <∞) > 0,

where Ty := inf{t > 0; Xt = y}.
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Stochastic Differential Equations Linear Continuous Markov Processes

Linear Continuous Markov Processes II

In other words, for any regular LCMP X , starting with any interior
point x , any point y ∈ I can be reached by X with positive probability.

Lemma (Scale Function Formula)

For regular LCMP X, there exists a continuous, strictly increasing function
S on I s.t. for all a, b, x ∈ I with ` < a < x < b < r ,

Px (Tb < Ta) =
S(x)− S(a)

S(b)− S(a)
.

In addition, if S̃ is another function with the same properties, then
S̃(x) = αS(x) + β with α > 0 and β ∈ R.
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Stochastic Differential Equations Linear Continuous Markov Processes

Linear Continuous Markov Processes III
Proof. Let us first introduce shift operator. For any s ≥ 0, one can
construct F/F-measurable mapping θs : Ω→ Ω as:

Xt+s(ω) = Xt(θsω), ∀ ω ∈ Ω, s, t ≥ 0. (8)

It is also convenient to use the canonical probability space
Ω = C([0,∞)). Then, (9) is equivalent to

θsω(t) = ω(s + t), ∀ ω ∈ Ω, s, t ≥ 0. (9)
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Stochastic Differential Equations Linear Continuous Markov Processes

Linear Continuous Markov Processes IV
Note that Ta < T` and Tb < Tr , however, we don’t know the
relationship of Ta,Tb and T`,Tr .
Consider the event {Tr < T`,Ta < Tb}.
Clearly, on {Ta < Tb}, we have Ta < T` and Ta < Tr , then

T` = Ta + T` ◦ θTa , Tr = Ta + Tr ◦ θTa .

Using the strong Markov property, we get

Px (Tr < T`,Ta < Tb) = Ex
[
1Ta<Tb1Ta+Tr◦θTa<Ta+T`◦θTa

]
= Ex [1Ta<Tb1Tr<T` ◦ θTa ]

= Ex {Ex [1Ta<Tb1Tr<T` ◦ θTa |FTa ]}
= Ex {1Ta<TbEx [1Tr<T` ◦ θTa |FTa ]}

= Ex
{
1Ta<TbEXTa

[1Tr<T` ]
}

= Px (Ta < Tb)Pa(Tr < T`)
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Stochastic Differential Equations Linear Continuous Markov Processes

Linear Continuous Markov Processes V
Similarly, Px (Tr < T`,Tb < Ta) = Px (Tb < Ta)Pb(Tr < T`)
Then, it holds that

S(x) := Px (Tr < T`)
= Px (Ta < Tb)S(a) + Px (Tb < Ta)S(b)

Note that Px (Tb < Ta) + Px (Ta < Tb) = 1.
Then, it holds that

S(x) = (1− Px (Tb < Ta))S(a) + Px (Tb < Ta)S(b)

Solving Px (Tb < Ta) in terms of S(x),S(a) and S(b) to get the scale
function formula
Question: Prove that I 3 x → S(x) is strictly increasing and
continuous.
We call x → S(x) scale function of the regular LCMP X
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Stochastic Differential Equations Linear Continuous Markov Processes

Identification of Scale Function I

If the scale function of a LCMP X can be taken to be S(x) = x , then
we call this process is on its natural scale
The following theorem can used to identify the scale function of some
special LCMPs:

Theorem (Identification of Scale Function)

A locally bounded Borel function g is a scale function if and only if the
stopped process g(X )T`∧Tr = (g(Xt∧T`∧Tr ))t≥0 is a local martingale.

Proof. ⇐ Let g(X )T`∧Tr is a local martingale.
For ` < a < x < b < r , since g is locally bounded and
XTa∧Tb

t ∈ [a, b], g(X )Ta∧Tb is a bounded martingale.
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Stochastic Differential Equations Linear Continuous Markov Processes

Identification of Scale Function II
Using the optional stopping theorem, we have

g(x) = Ex [g(XTa∧Tb )], x ∈ (a, b).

Note that

Ex [g(XTa∧Tb )] = g(a)(1− Px (Tb < Ta)) + g(b)Px (Tb < Ta)

Then, it holds that

g(x) = g(a)(1− Px (Tb < Ta)) + g(b)Px (Tb < Ta)

This yields that

Px (Tb < Ta) =
g(x)− g(a)

g(b)− g(a)
.

By the definition of the scale function, g is a scale function.
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Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP I

For any open interval J = (a, b) satisfying [a, b] ⊂ I, the exit time of
J is defined by

σJ := inf{t ≥ 0; Xt /∈ J}.

Then, P-a.s., σJ = Ta ∧ Tb for x ∈ J , and σJ = 0 for x /∈ J .
Define mJ(x) := Ex [σJ ] for x ∈ I.
Let Jc,d = (c, d) ⊂ J (i.e., a < c < d < b). Then σJ ≥ σJc,d .
For a < c < x < d < b, we have

mJ(x) = Ex [σJ ] = Ex [σJc,d + σJ ◦ θσJc,d
]

= Ex [σJc,d ] + Ex [σJ ◦ θJc,d ] = mJc,d (x) + Ex [σJ ◦ θJc,d ]

Note that x ∈ Jc,d , then mJc,d (x) > 0.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 37 / 291



Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP II

We also have from the strong Markov property that

Ex [σJ ◦ θJc,d ] = EXTc
[σJ ]Px (Tc < Td ) + EXTd

[σJ ]Px (Td < Tc)

= mJ(c)Px (Tc < Td ) + mJ(d)Px (Td < Tc)

By Lemma 5, we have

Px (Td < Tc) =
S(x)− S(c)

S(d)− S(c)
, Px (Tc < Td ) =

S(d)− S(x)

S(d)− S(c)

As a summay

mJ(x) = mJc,d (x) + mJ(c)
S(d)− S(x)

S(d)− S(c)
+ mJ(d)

S(x)− S(c)

S(d)− S(c)

Since mJc,d (x) > 0, x → mJ(x) is a S-concave function.
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Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP III

Define a function on I × I as:

GJ(x , y) =



(S(x)− S(a))(S(b)− S(y))

S(b)− S(a)
, a ≤ x ≤ y ≤ b,

(S(y)− S(a))(S(b)− S(x))

S(b)− S(a)
, a ≤ y ≤ x ≤ b,

0, otherwise.
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Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP IV

Using the theory of S-concave function, we have

Theorem (Existence of Speed Measure)

There exists a unique Radon measure m defined on int(I) such that, for
any J = (a, b) satisfying [a, b] ⊂ I,

mJ(x) =

∫
I
GJ(x , y)m(dy), x ∈ J .

The measure m above is called speed measure of LCMP X .
Question: For any open subset J = (a, b), x ∈ J , and any
nonnegative Borel function f , it holds that

Ex

[∫ σJ

0
f (Xs)ds

]
=

∫
I
GJ(x , y)f (y)m(dy). (10)
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Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP V
Hints: Pick c such that a < c < b. Define, for x ∈ J ,

gc(x) := Ex

[∫ σJ

0
1c<Xt<bdt

]
.

Then gc is a S-concave function on J and gc(a) = gc(b) = 0.
The following theorem can be used to identify the speed measure of a
LCMP:

Theorem (Identification of Speed Measure)

Let A be the infinitesimal generator of the regular LCMP X and its
domain be D(A). Let I be any sub-interval of R. Define

d
dS f (x) := lim

y→x
f (y)− f (x)

S(y)− S(x)
, if exists.

Then, for any bounded f on D(A),
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Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP VI

(i) df
dS exists except possibly on the set {x ; m({x}) > 0}.

(ii) For x1, x2 ∈ Int(I) for which this S-derivative exists,

df
dS (x2)− df

dS (x1) =

∫ x2

x1
Af (y)m(dy).

Proof. For the bounded f on D(A), Dykin’s formula yields that, for
J = (a, b) ⊂ Int(I) and a < x < b,

Ex [f (XTa∧Tb )]− f (x) = Ex

[∫ Ta∧Tb

0
Af (Xs)ds

]

Using (10) in Question, we have, for σJ = Ta ∧ Tb,

Ex

[∫ σJ

0
Af (Xs)ds

]
=

∫
I
GJ(x , y)Af (y)m(dy)
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Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP VII

This yields that

Ex [f (XTa∧Tb )]− f (x) =

∫
I
GJ(x , y)Af (y)m(dy),

Note that

Ex [f (XTa∧Tb )] = f (a)Px (Ta < Tb) + f (b)Px (Tb < Ta)

By Lemma 5, we have

Px (Tb < Ta) =
S(x)− S(a)

S(b)− S(a)
, Px (Ta < Tb) =

S(b)− S(x)

S(b)− S(a)
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Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP VIII

Combine the above equalities, we have

f (b)− f (x)

S(b)− S(x)
− f (x)− f (a)

S(x)− S(a)
=

∫
I
HJ(x , y)Af (y)m(dy)

where HJ(x , y) is defined as

HJ(x , y) =



S(y)− S(a)

S(x)− S(a)
≤ 1, a < y ≤ x ,

S(b)− S(y)

S(b)− S(x)
≤ 1, x ≤ y < b,

0, otherwise.
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Boundary Classification I

Consider the one-dimensional SDE:

dXt = b(Xt)dt + σ(Xt)dWt

We impose the following assumptions:
(ND) σ(x) > 0 for x ∈ I;
(LI) for all x ∈ I, there exists ε > 0 s.t.∫ x+ε

x−ε

1 + |b(y)|
σ2(y)

dy <∞.

The generator of X is given by, for f ∈ C2(R),

Af (x) = b(x)f ′(x) +
σ2(x)

2 f ′′(x), x ∈ R
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Boundary Classification II

In order to find a scale function S of X , by Theorem 6, we solve

AS(x) = 0, x ∈ R. (11)

The solution of (11) is given by, for some c ∈ R,

S(x) =

∫ x

c
exp

(
−
∫ y

c

2b(z)

σ2(z)
dz
)
dy , x ∈ R. (12)

Note that x → S(x) is twice differential. Then df
dS (x) = f ′(x)

S′(x) .
From (12), we obtain

S ′(x) = exp
(
−
∫ x

c

2b(z)

σ2(z)
dz
)
, S ′′(x) = −2b(x)

σ2(x)
S ′(x).
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Boundary Classification III

Then, it holds that

df
dS (x2)− df

dS (x1) =

∫ x2

x1

[ f ′(y)

S ′(y)

]′
dy

= 2
∫ x2

x1

1
2σ

2(y)f ′′(y) + f ′(y)b(y)

σ2(y)S ′(y)
dy

= 2
∫ x2

x1

Af (y)

σ2(y)S ′(y)
dy =

∫ x2

x1
Af (y)m(dy).

This implies that, the speed measure of X is given by

m(dx) =
2

σ2(x)S ′(x)
dx . (13)
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Boundary Classification IV

William Feller (1906-1970): Croatian-American mathematician
specializing in probability theory. He obtained his Ph.D from
University of Goettingen (supervisor: R. Courant who is the assistant
of D. Hilbert)
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Boundary Classification V

Figure: W. Feller (1906-1970): Croatian-American mathematician.
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Boundary Classification VI

Hereafter, define s(x) = S ′(x) and m(x) = m(dx)/dx .

Definition (Inaccessible, Absorbing, Reflecting Endpoints)

For the end-point b of the interval I = (`, r),
(i) it is called inaccessible, if b ∈ Ic ;

(ii) If b ∈ I, then b is called absorbing, if Pb(Ty <∞) = 0 for all y ∈ I \ {b};

(iii) it is called reflecting, if there exists y ∈ I \ {b} s.t. Pb(Ty <∞) > 0.

Below, we only discuss the conditions under which the endpoints of I
are inaccessible.
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Test for Explosion I

For the interval I = (`, r), consider strictly monotone sequence
(`k)k≥1 and (rk)k≥1 satisfying ` < `k < rk < r , limk→∞ `k = `,
limk→∞ rk = r and

Tk := inf{t ≥ 0; Xt /∈ (`k , rk)}, k ≥ 1.

The explosion time is defined as

T := inf{t ≥ 0; Xt /∈ (`, r)} = lim
k→∞

Tk .

The related probability to Tk can computed by the scale function
formula in Lemma 5.
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Test for Explosion II

Let us define the following quantities: for y ∈ I,

Σr :=

∫ r

y

(∫ v

y
m(u)du

)
s(v)dv ,

Σ` :=

∫ y

`

(∫ y

v
m(u)du

)
s(v)dv ,

Nr :=

∫ r

y

(∫ v

y
s(u)du

)
m(v)dv ,

N` :=

∫ y

`

(∫ y

v
s(u)du

)
m(v)dv .

(14)

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 52 / 291



Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Test for Explosion III

Theorem (Feller’s Test for Explosion)

Recall (14). Let (ND), (LI) hold. Then, it holds that
(i) ` and r are inaccessible (i.e., P(T =∞) = 1) if and only if Σ` = Σr = +∞

(i1) r is a natural boundary if Σr = Nr = +∞
(i2) r is an entrance boundary if Σr = +∞ and Nr < +∞
(i3) ` is a natural boundary if Σ` = N` = +∞
(i4) ` is an entrance boundary if Σ` = +∞ and N` < +∞

For this theorem, please refer to Karlin and Taylor (1981), Table 6.2
Question: For GBM,

X x
t = x +

∫ t

0
µX x

s ds +

∫ t

0
σX x

s dWs , x ∈ I := (0,∞),

where µ ∈ R and σ > 0. Prove that:
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Test for Explosion IV

the boundaries 0 and ∞ are all inaccessible, i.e.,
P(X x

t ∈ I, ∀ t ≥ 0) = 1.
Question: For Yamada-Wantanabe process,

X x
t = x +

∫ t

0
(a + bX x

s )ds +

∫ t

0
σ(X x

s )pdWs , x ∈ I := (0,∞),

where a, σ > 0 and b ∈ R. Prove that:
when p = 1

2 , the boundaries 0 and ∞ are inaccessible, i.e.,
P(X x

t ∈ I, ∀ t ≥ 0) = 1 if and only if 2a ≥ σ2;
when p > 1

2 , provide the conditions under which the boundaries 0 and
∞ are inaccessible.
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Stochastic Differential Equations Feller’s Boundary Classification

Feller’s Test for Explosion V

Question: Consider the following so-called stepping-stone process
given by

X x
t = x +

∫ t

0
(a + bX x

s )ds +

∫ t

0
σ
√

(X x
s − `)(r − X x

s )dWs

x ∈ I := (`, r), (15)

where a, σ > 0 and b ∈ R. Do that
provide the conditions under which the boundaries ` and r are
inaccessible.
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Feynman-Kac Formula

Course Outline

1 Treasure Box

2 Stochastic Differential Equations

3 Feynman-Kac Formula
History of Feynman-Kac Formula
Dirichlet Problem
Initial-Boundary Problem
Cauchy Problems
Localization of Feynman-Kac Formula

4 Fokker-Planck-Kolmogorov Equations

5 Propagation of Chaos

6 Replicator-Mutator Equations

7 Mean Field Games
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Feynman-Kac Formula History of Feynman-Kac Formula

History of Feynman-Kac Formula I

In the 1940s, R. Feynman discovered that the Schrödinger equation
the differential equation governing the time evolution of quantum
states in quantum mechanics

could be solved by a kind of averaging over paths, an observation
which led him to a far-reaching reformulation of the quantum theory
in terms of “path integrals"
Upon learning of Feynman’s ideas, M. Kac realized that a similar
representation could be given for solutions of the heat equation with
external cooling terms

a mathematician at Cornell University, where Feynman was, at the
time, an Assistant Professor of Physics

This representation is now known as Feynman-Kac formula
Later it became evident that the expectation occurring in this
representation is of the same type that occurs in derivative security
pricing
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Feynman-Kac Formula History of Feynman-Kac Formula

History of Feynman-Kac Formula II

R. Feynman (1918-1988): 1965 Nobel Prize in Physics
Mark Kac (1914-1984): probability, statistical physics, Feynman-Kac
path integral

Figure: Left: R. Feynman; Right: M. Kac
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Feynman-Kac Formula History of Feynman-Kac Formula

Reference on Feynman-Kac Formula I

I recommend you the book by Friedman (1975) on the theory of linear
PDEs and their stochastic representation:

Figure: Friedman’s Book, Volume 1

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 59 / 291



Feynman-Kac Formula History of Feynman-Kac Formula

Reference on Feynman-Kac Formula II
A. Friedman (1931-): Distinguished Professor of Math. & Phys.
Sciences at Ohio State University; Areas of Expertise: PDEs,
Mathematical Biology, SDEs, Control Theory and Free Boundary
Problems.

Figure: Avner Friedman (1931-)
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Feynman-Kac Formula Dirichlet Problem

Dirichlet Problem I

Recall that D ⊆ Rn be a domain:
i.e., an open connected subset of Rn

Consider functions b : D → Rn×1, σ : D → Rn×m and g : D → R
The second-order differential operator acted on C2(D) is defined as:
for f ∈ C2(D),

Af (x) := b(x)>∇x f (x) +
1
2tr[a(x)∇2

x f (x)], x ∈ D,

where a(x) := σσ>(x), ∇x = (∂x1 , . . . , ∂xn )> and ∇2
x is the

corresponding Hessian matrix.
We impose the following assumption (AFriD) introduced by Friedman
(1975), page 144:
(F1): The domain D is bounded and the boundary ∂D of D is in C2

i.e., barriers exist at the all points of ∂D.
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Feynman-Kac Formula Dirichlet Problem

Dirichlet Problem II

(F2): The operator A is uniformly elliptic in D:
there exists C > 0 s.t.

n∑
i,j=1

aij(x)ξiξj ≥ C |ξ|2

for all x ∈ D and ξ ∈ Rn.
(F3): b, a are Lipschitz continuous in D.
(F4): g ≤ 0 and g is Hölder continuous in D.
(F5): Given functions f : D → R and φ : ∂D → R, they satisfy that

f is Hölder continuous in D;
φ is continuous on ∂D.
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Feynman-Kac Formula Dirichlet Problem

Dirichlet Problem III

Theorem (Well-posedness of Dirichlet Problem)

Let (AFriD) hold. Consider the Dirichlet problem given by

(A+ g)u(x)− f (x) = 0, in D; u(x) = φ(x) on ∂D. (16)

Then, there is a unique solution u ∈ C2(D) ∩ C(D) of Dirichlet
problem (16).

Proof. This follows from Theorem 6.2.4 of Friedman (1975), page
134.
Question: Consider the SDE given by: for (t, x) ∈ R+ × Rn,

X t,x
s = x +

∫ s

t
b(X t,x

r )dr +

∫ s

t
σ(X t,x

r )dWr , s ≥ t. (17)

Let σD be the exit time of D for X , i.e., σD := inf{t ≥ 0; Xt /∈ D}
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Feynman-Kac Formula Dirichlet Problem

Dirichlet Problem IV

Note that even if (t, x) ∈ R+ × D, the Lipschitz continuity of b, σ on
Rn does not yield that X t,x must be in D, P-a.s.
If (AFriD) holds and Ex [σD] <∞ for all x ∈ D, then the solution u of
Dirichlet problem (16) admits the probabilitistic representation:

u(x) = E
[
φ(X 0,x

σD ) exp
(∫ σD

0
g(X 0,x

s )ds
)]

− E
[∫ σD

0
f (X 0,x

s ) exp
(∫ s

0
g(X 0,x

r )dr
)
ds
]
.

Question: Using Theorem 11 and then applying Itô formula to

u(Xt) exp
(∫ t

0
g(X 0,x

s )ds
)
, on t ∈ [0, σD].
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Feynman-Kac Formula Dirichlet Problem

Dirichlet Problem V
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Feynman-Kac Formula Dirichlet Problem

Dirichlet Problem VI
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Feynman-Kac Formula Dirichlet Problem

Dirichlet Problem VII
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Feynman-Kac Formula Initial-Boundary Problem

Initial-Boundary Problem I

We incorporate time variable t into the Dirichlet problem and this
results in the initial-boundary problem
The initial-boundary problem is described as:

(∂t +A+ g)u(t, x) = f (t, x), in (t, x) ∈ [0,T )× D,
u(T , x) = φ(x), on D, (18)
u(t, x) = h(t, x), on [0,T )× ∂D.

It is more reasonable to call (18) a terminal-boundary problem.
However, we can change t to T − t and then transfer it into an
initial-boundary problem
We impose the assumption (AFriIB):
(FIB1): (F1)-(F4) in the assumption (AFriD) hold
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Feynman-Kac Formula Initial-Boundary Problem

Initial-Boundary Problem II

(FIB2): The functions f : [0,T )× D → R, φ : D → R and
h : [0,T )× ∂D satisfy

f is Hölder continuous in [0,T )× D;
φ is continuous on D;
h is continuous on {T} × D ∪ [0,T ]× ∂D and h(T , x) = φ(x) for
x ∈ ∂D.

The following well-posedness of the initial-boundary problem (18) has
been proved by Theorem 6.5.2 in Friedman (1975), page 147.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 69 / 291



Feynman-Kac Formula Initial-Boundary Problem

Initial-Boundary Problem III

Theorem (Well-posedness of Initial-Boundary Problem)

Let (AFriIB) hold. Then, the initial-boundary problem (18) admits a
unique solution u ∈ C1,2 := C1,2([0,T )× D) ∩ C([0,T )× D) such that

u(t, x) = E
[
h(σt

D,X
t,x
σt

D
) exp

(∫ σt
D

t
g(X t,x

s )ds
)
1σt

T<T

]

+ E
[
φ(X t,x

T ) exp
(∫ T

t
g(X t,x

s )ds
)
1σt

T =T

]

− E
[∫ σt

D

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds
]
,

where σt
T := inf{s ∈ [t,T ); X t,x

s /∈ D} for x ∈ D. It is defined as T if the
set is empty.
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Feynman-Kac Formula Initial-Boundary Problem

Initial-Boundary Problem IV

Let us make the following assumptions:
(Ab,σ) b : D → Rn×1 and σ : D → Rn×m are locally Lipschitiz
continuous.
(AX ) For all (t, x) ∈ [0,T ]× D, the solution X t,x of SDE (17)
neither explodes nor leaves D before T :

i.e., P(sups∈[t,T ] |X t,x
s | <∞) = P(X t,x

s ∈ D, ∀ s ∈ [t,T ]) = 1.
The assumption (Ab,σ) implies the pathwiseness uniqueness of
SDE (17).
The assumption (AX ) results in

σt
T := inf{s ∈ [t,T ); X t,x

s /∈ D} = inf ∅ = T
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Feynman-Kac Formula Initial-Boundary Problem

Initial-Boundary Problem V

Then, Theorem 12 gives the stochastic representation of the following
Cauchy problem:

(∂t +A+ g)u(t, x) = f (t, x), in (t, x) ∈ [0,T )× D,
u(T , x) = φ(x), on D. (19)

We next summarize the well-posedness of Cauchy problem (19) on
the bounded domain D in the following theorem:
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Feynman-Kac Formula Initial-Boundary Problem

Initial-Boundary Problem VI

Theorem (Well-posedness of Cauchy Problem on Bounded Domain)

Let (Ab,σ), (AX ) and the following assumptions hold:
(C1): The domain D ⊆ Rn is bounded.

(C2): The operator A is uniformly elliptic in D.

(C3): f is Hölder continuous in [0,T ]×D and g is Hölder continuous on D.

Then, Cauchy problem (19) admits a unique solution u ∈ C1,2 such that

u(t, x) = E
[
φ(X t,x

T ) exp
(∫ T

t
g(X t,x

s )ds
)]

− E
[∫ T

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds
]
. (20)
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Feynman-Kac Formula Cauchy Problems

Cauchy Problems I

For D = Rn, it is not bounded, and hence Theorem 13 fails.
In order to study stochastic representation of the Cauchy problem on
Rn:

(∂t +A+ g)u(t, x) = f (t, x), in (t, x) ∈ [0,T )× Rn,

u(T , x) = φ(x), on Rn, (21)

we have to impose the boundedness assumption for the coefficients of
the equation.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 74 / 291



Feynman-Kac Formula Cauchy Problems

Cauchy Problems II

From Theorem 6.5.3. of Friedman (1975) the well-posedness of
Cauchy problem (21) and its stochastic representation are given by:

Theorem (Well-posedness of Cauchy Problem on Rn)

Let the following assumptions hold:
(CR1): The operator A is uniformly elliptic, and b, σ are bounded, locally
Lipschitz continuous on Rn

(CR2): g : Rn → R is bounded and is locally Hölder continuous

(CRf): f is continuous in [0,T ]× Rn, Hölder continuous in x uniformly
w.r.t. t ∈ [0,T ], and |f (t, x)| ≤ C(1 + |x |p)

(CRphi): φ : Rn → R is continuous and |φ(x)| ≤ C(1 + |x |p) for C , p > 0.

Then, Cauchy problem (21) admits a unique solution u ∈ C1,2 satisfying
stochastic representation (20), and |u(t, x)| ∨ |∇xu(t, x)| ≤ C(1 + |x |p).
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea I

The stochastic representation of the above Cauchy problems is called
Feynman-Kac Formula.
However, many financial and physical applications do not satisfy the
very restrictive assumptions imposed by these standard results.
For instance, for the unbounded domain D, b, σ may be unbounded
or grow faster than linearly or have unbounded derivatives, etc.
Let us introduce a mixed argument of localization and probability
proposed by Health and Schweizer (2000):
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea II

Hereafter, we assume that the domain D ⊆ Rn is not necessarily
bounded
Instead, we make the following assumption on the domain D:

(AD) There exists a sequence (Dk)k≥1 of bounded domains
with C2-boundary and Dk ⊂ D s.t.

⋃∞
k=1Dk = D

Under assumptions (Ab,σ) and (AX ), we can have existence and
uniqueness of D-valued strong solution of SDE: Consider the SDE
given by: for (t, x) ∈ [0,T ]× D,

D 3 X t,x
s = x +

∫ s

t
b(X t,x

r )dr +

∫ s

t
σ(X t,x

r )dWr , s ∈ [t,T ]
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea III

For (t, x) ∈ [0,T ]× D, we define

u(t, x) := E
[
φ(X t,x

T ) exp
(∫ T

t
g(X t,x

s )ds
)]

− E
[∫ T

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds
]
. (22)

We next study the continuity of (t, x)→ u(t, x) under some
additional assumptions.
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Localization Idea IV

Lemma (Continuity of (t, x)→ u(t, x))

Let (Ab,σ), (AX ) and the following assumption hold:
(HSfgphi) g : D → R is continuous and is bounded from above,

f : [0,T ]× D → R and φ : D → R are continuous which
satisfy |f (t, x)| ∨ |φ(x)| ≤ C(1 + |x |p) for C , p > 0;

(HSXmoment) E [sups∈[t,T ] |X
t,x
s |q] ≤ C(1 + |x |q) for all q ≥ 1.

Then, the function u : [0,T ]× D → R defined by (22) is continuous.

Proof. Denoted by Vt,x the term in the expectation of (22). Define
Hε

t,x := {(s, y) ∈ [0,T ]× D; |s − t|+ |y − x | < ε} for ε > 0. Then,
for k > 1 such that pk ≥ 1, using (HSfgphi) and (HSXmoment),

sup
(s,y)∈Hεt,x

E [|Vs,y |k ] ≤ Ck,T

{
1 + E

[
sup

s∈[t,T ]

∣∣X t,x
s
∣∣pk
]}
≤ Ck,T (1 + |x |pk)
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea V

This implies that (Vr ,y )(r ,y)∈Hεt,x is uniformly integrable

The assumptions (Ab,σ) and (AX ) yield that (s, t, x)→ X t,x
s is

P-a.s. continuous. Hence (t, x)→ φ(X t,x
T ) is P-a.s. continuous.

(s, t, x)→ g(X t,x
s ) and (s, t, x)→ f (s,X t,x

s ) are P-a.s. uniformly
continuous and bounded on any compact set of [0,T ]× [0,T ]× D.
Then (t, x)→

∫ T
t g(X t,x

s )ds and (t, x)→
∫ T

t f (s,X t,x
s )ds are P-a.s.

continuous.
In summary, (t, x)→ Vt,x is P-a.s. continuous. Therefore, the
uniform integrability of (Vr ,y )(r ,y)∈Hεt,x implies that
(t, x)→ u(t, x) = E [Vt,x ] is continuous.

If p = 0 in the assumption (HSfgphi) of Lemma 15 (i.e., f , φ are all
bounded), then Lemma 15 holds without the assumption (HSXmoment)
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea VI

Based on the continuity of (t, x)→ u(t, x), for each k ≥ 1, consider
the initial-boundary problem on [0,T ]× Dk :

(∂t +A+ g)vk(t, x) = f (t, x), in (t, x) ∈ [0,T )× Dk ,

vk(T , x) = u(T , x) = φ(x), on Dk , (23)
vk(t, x) = u(t, x), on [0,T )× ∂Dk .

As in Theorem 12 with the assumption (AFriIB), we then assume, for
each k ≥ 1,

(AHS) (AHSba): The operator A is uniformly elliptic in Dk ,
i.e., there is a lk > 0 s.t. ξ>a(x)ξ ≥ lk |ξ|2 for all
x ∈ Dk and ξ ∈ Rn;
(AHSfg): g is Hölder continuous on Dk and f is
uniformly Hölder continuous on [0,T ]× Dk .
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea VII

Theorem (General Feynman-Kac Formula)

Let (Ab,σ), (AX ), (AD), (AHS), (HSfgphi), (HSXmoment) hold. Then,
u(t, x) defined by the stochastic representation (22) is in C1,2 and satisfies
the Cauchy problem (19), i.e.,

(∂t +A+ g)u(t, x) = f (t, x), in (t, x) ∈ [0,T )× D,
u(T , x) = φ(x), on D.

Moreover, there exists a unique classical solution of Cauchy problem (19).

Proof. For each k ≥ 1, the assumption (Ab,σ) implies that b, a are
Lipschitz continuous on the bounded Dk .
The assumptions (HSfgphi) and (HSXmoment) yield that u(t, x) is
continuous on [0,T ]× ∂Dk ∪ {T} × Dk by Lemma 15 (Dk ⊂ D).
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea VIII

Combine above claims and (AHS) to obtain that (AFriIB) is satisfied
on [0,T ]× Dk

Then, Theorem 12 yields that the initial-boundary problem (23)
admits a unique classical solution vk(t, x).
Now, for any (t, x) ∈ [0,T ]× D, the assumption (AD) implies that
one can find a k ≥ 1 s.t. x ∈ Dk .
Define σk as the exit time of X t,x from Dk from t before T , i.e.,
σk := inf{s ∈ [t,T ); X t,x

s /∈ Dk} and inf ∅ = T .
Since the path s → X t,x

s is continuous, we have

(σk ,X t,x
σk ) ∈ (0,T )× ∂Dk ∪ {T} × Dk .
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea IX

By Lemma 15, we obtain u(σk ,X t,x
σk ) <∞. Therefore, we can also

apply the stochastic representation of vk(t, x) given in Theorem 12,
one has

vk(t, x) = E
[
u(σk ,X t,x

σk ) exp
(∫ σk

t
g(X t,x

s )ds
)
1σk<T

]
+ E

[
φ(X t,x

T ) exp
(∫ T

t
g(X t,x

s )ds
)
1σk =T

]

− E
[∫ σk

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds
]

u(T ,x)=φ(x)
=== E

[
u(σk ,X t,x

σk ) exp
(∫ σk

t
g(X t,x

s )ds
)]

− E
[∫ σk

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds
]
.
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea X

We next prove that u(t, x) = vk(t, x) if (t, x) ∈ [0,T ]× Dk .
Since T ≥ σk ≥ t, we get

φ(X t,x
T ) exp

(∫ T

t
g(X t,x

s )ds
)
−
∫ T

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds

= exp
(∫ σk

t
g(X t,x

s )ds
)
φ(X t,x

T ) exp
(∫ T

σk
g(X t,x

s )ds
)

− exp
(∫ σk

t
g(X t,x

r )dr
)∫ T

σk
f (s,X t,x

s ) exp
(∫ s

σk
g(X t,x

r )dr
)
ds

−
∫ σk

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds.
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Localization Idea XI

This gives that

E
[
φ(X t,x

T ) exp
(∫ T

t
g(X t,x

s )ds
)
−
∫ T

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds
∣∣∣∣Fσk

]

= exp
(∫ σk

t
g(X t,x

s )ds
)

× E
[
φ(X t,x

T ) exp
(∫ T

σk

g(X t,x
s )ds

)
−
∫ T

σk

f (s,X t,x
s ) exp

(∫ s

σk

g(X t,x
r )dr

)
ds
∣∣∣∣Fσk

]

−
∫ σk

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds. (24)
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Localization Idea XII

Using the strong Markov property of X t,x , we have

E
[
φ(X t,x

T ) exp
(∫ T

σk

g(X t,x
s )ds

)
−
∫ T

σk

f (s,X t,x
s ) exp

(∫ s

σk

g(X t,x
r )dr

)
ds
∣∣∣∣Fσk

]
= u(σk ,X t,x

σk
).

Taking expectation on both sides of (24), for each k ≥ 1 and
(t, x) ∈ [0,T ]× Dk ,

u(t, x) = E
[
u(σk ,X t,x

σk
) exp

(∫ σk

t
g(X t,x

s )ds
)]

− E
[∫ σk

t
f (s,X t,x

s ) exp
(∫ s

t
g(X t,x

r )dr
)
ds
]

= vk(t, x).

By (AD) and (23), u(t, x) satisfies Cauchy problem (19)
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization Idea XIII
The uniqueness follows from the stochastic representation (22) of
u(t, x) since X t,x is unique.
Thus, we complete the proof of the theorem.
Question: This problem is related to an option pricing problem under
stochastic volatility model:

dSt = rSt +
√
VtStdWt , dVt = α(β − Vt)dt + σ

√
VtdBt ,

where B,W are two Brownian motions with E [WtBt ] = ρt for
ρ ∈ (−1, 1) and 2αβ ≥ σ2.
The P-price at time t of a European put on S with maturity T and
strike K is then

u(t,St ,Vt) = E
[
e−
∫ T

t rdsφ(ST )
∣∣FB,W

t

]
, φ(x) = (K − x)+

Prove that u ∈ C1,2 with D = (0,∞)2. How about the case
φ(x) = (x − K )+?
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Fokker-Planck-Kolmogorov Equations

Course Outline

1 Treasure Box

2 Stochastic Differential Equations

3 Feynman-Kac Formula

4 Fokker-Planck-Kolmogorov Equations
History of FPK Equations
Feller Semigroup
Forward Kolmogorov Equation
Non-Divergence Form of FPK Equations
Gradient Flow
Expansive Solution of FPK Equations

5 Propagation of Chaos

6 Replicator-Mutator Equations

7 Mean Field Games
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Fokker-Planck-Kolmogorov Equations History of FPK Equations

History of FPK Equations I

The Fokker-Planck equation is the equation governing the time
evolution of the probability density of the Brownian particles.
The Fokker-Planck equation is first established by Dutch physicist
Adriaan Fokker and German physicist Max Planck.
The Fokker-Planck equation is also known as the forward Kolmogorov
equation, after Andrey Kolmogorov, who independently discovered
the concept in 1931.
The Fokker-Planck equation can be also derived from
Chapman-Kolmogorov equation.
Andrey Kolmogorov also finds backward Kolmogorov equation using
Chapman-Kolmogorov equation.
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Fokker-Planck-Kolmogorov Equations History of FPK Equations

History of FPK Equations II

Figure: Left: A. Fokker, Middle: M. Planck, Right: A. Kolmogorov.

Adriaan Fokker (1887-1972): Dutch physicist and musician, he was the
inventor of the Fokker organ.
Max Planck (1858-1947): German physicist, 1918 Nobel Prize in Physics, he
was the founder of Quantum Mechanics.
A. Kolmogorov (1903-1987): Russian Mathematician, he was the founder of
modern probability theory and one of the 20-th century’s most eminent
mathematicians.
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Fokker-Planck-Kolmogorov Equations Feller Semigroup

Feller Semigroup I

Let b : Rn → Rn×1 and σ : Rn → Rn×m satisfy (Alip)
Let us consider the following n-dimensional Itô SDE given by

X x
t = x +

∫ t

0
b(X x

s )ds +

∫ t

0
σ(X x

s )dWs , (t, x) ∈ R+ × Rn.

Introduce the following spaces:

Let P(S) be the set of Borel probability measures on a topology space S

If (S, d) is a metric space, denoted by Pp(S) be the set of Borel probab.
measures on S with finite p-order moments for p ≥ 1

Given the solution X x of SDE, define the transition semigroup as: for
any f ∈ B(Rn), Pt f (x) := E [f (X x

t )],
B(S) is the set of bounded Borel functions on a topology space S.
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Fokker-Planck-Kolmogorov Equations Feller Semigroup

Feller Semigroup II

Lemma (Feller Semigroup)

Let (Alip) hold. Then (Pt)t≥0 is a Feller semigroup.

Proof. For the semigroup property, note that X x is a (strong) Markov
process. Then for s, t ≥ 0,

Ps+t f (x) = E [f (Xs+t)|X0 = x ] = E{E [f (Xs+t)|X0 = x ,Xt ]|X0 = x}
= E{EXt [f (Xs)]|X0 = x} = E [Ps f (Xt)|X0 = x ]=Pt ◦ Ps f (x)

i.e., the semigroup property holds Ps+t = Pt ◦ Ps .
For Feller property, let C0(Rn) be the set of continuous real-valued
functions f on Rn satisfying lim|x |→∞ f (x) = 0.
Then, for any f ∈ C0(Rn), since x → X x

t is P-a.s. continuous and f
is continuous, we have x → f (X x

t ) is P-a.s. continuous using CMT.
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Fokker-Planck-Kolmogorov Equations Feller Semigroup

Feller Semigroup III
Then, BCT yields the continuity of x → Pt f (x).
Note that, for any R > 0,

|Pt f (x)| ≤ E [|f (X x
t − x + x)|1|X x

t −x |≤R ]

+ E [|f (X x
t − x + x)|1|X x

t −x |>R ]

≤ sup
{z; |z−x |≤R}

|f (z)|+ ‖f ‖∞P(|X x
t − x | > R)

≤ sup
{z; |z−x |≤R}

|f (z)|+ ‖f ‖∞R−2E [|X x
t − x |2]

≤ sup
{z; |z−x |≤R}

|f (z)|+ ‖f ‖∞R−2Ct

By letting x , then R, tend to ∞, we have lim|x |→∞ Pt f (x) = 0.
To this end, for any x ∈ Rn, t → Pt f (x) is also continuous.
It holds that Af = limt↓0

Pt f−f
t .
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation I

Given a probability measure ρ0 ∈ P(Rn), define

µt(dx) =

∫
Rn

E
[
δX x0

t
(dx)

]
ρ0(dx0), on B(Rn)

where δ is the Dirac-delta measure and
B(Rn) is the Borel-σ-algebra, i.e., the σ-algebra generated by open sets
of Rn;
C∞0 (Rn) is the set of functions f ∈ C0(Rn) which are also infinitely
differentiable.

Obviously, µ0 = ρ0, µt ∈ P(Rn) for all t ≥ 0, and for any test
function f ∈ C∞0 (Rn),

〈µt , f 〉 :=

∫
Rn

f (x)µt(dx) =

∫
Rn

Pt f (x0)ρ0(dx0).

Let A∗ be the adjoint operator of the generator A:
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation II

i.e., 〈A∗f , g〉L2 = 〈Ag , f 〉L2 , for f , g ∈ C2
0 (Rn) ∩ L2(Rn);

If b, σ are smooth, then

A∗f (x) =
1
2

n∑
i,j=1

∂2xi xj
((σσ>)ij(x)f (x))−

n∑
i=1

∂xi (bi (x)f (x)).

We next introduce Fokker-Planck-Kolmogorov (FPK) equation and
the resulting forward Kolmogorov eqaution:
Start with Itô formula for f (X x0

t ), which yields that

f (X x0
t ) = f (x0) +

∫ t

0
Af (X x0

s )ds +

∫ t

0
∇x f (X x0

s )>σ(X x0
s )dWs .
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation III

Then, it holds that∫
Rn

E [f (X x0
t )]ρ0(dx0) =

∫
Rn

E [f (x0)]ρ0(dx0)

+

∫ t

0

∫
Rn

E [Af (X x0
s )] ρ0(dx0)ds

+

∫ t

0

∫
Rn

E
[
∇x f (X x0

s )>σ(X x0
s )dWs

]
︸ ︷︷ ︸

==0

ρ0(dx0).

Therefore∫
Rn

E [f (X x0
t )]ρ0(dx0) =

∫
Rn

E [f (x0)]ρ0(dx0)

+

∫ t

0

∫
Rn

E [Af (X x0
s )] ρ0(dx0)ds.
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation IV

Lemma (Forward Kolmogorov Equation)

Let (Alip) hold. Then, for all f ∈ C∞0 (Rn),

〈µt , f 〉 = 〈ρ0, f 〉+

∫ t

0
〈µs ,Af 〉ds, t ≥ 0. (25)

If ρ0(dx) = u0(x)dx, then µt(dx) = p(t, x)dx, where p(t, x) satisfies that

∂tp(t, x) = A∗p(t, x), (t, x) ∈ (0,∞)× Rn; (26)
p(0, x) = u0(x), x ∈ Rn.

We call (25) a Fokker-Planck-Kolmogorov equation and Eq. (26)
satisfied by the density function is said to be a forward Kolmogorov
equation, which is first established by Fokker and Planck.
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation V

Warning: Note that we don’t have the sufficient smoothness of
p(t, x) at the moment, the solution of the forward Kolmogorov
equation (26) should be understood as in the distributional sense: for
all f ∈ C∞0 (Rn),

〈p(t, ·), f 〉 = 〈u0, f 〉+

∫ t

0
〈p(s, ·),Af 〉ds, t ≥ 0.

Since 〈µt , f 〉 =
∫
Rn Pt f (y)ρ0(dy), if ρ0(dx) = δx0(x)dx , then FPK

equation (25) reads

∂tPt f = Pt(Af ), P0f = f .

The word “forward" means that the above equation is obtained by
perturbing the final position, i.e., Pt(Af ) is the limit of Pt(Pεf−f

ε ) as
ε→ 0
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation VI

Question: Prove that (Pt f )t≥0 satisfies the so-called backward
equation ∂tPt f = A(Pt f ) with P0f = f .
Transition density function of X x0 : Let ρ0(dx) = δx0(x)dx and use
p(t, x0; x) to indicate the dependence of p(t, x) on a given initial
point x0 ∈ Rn.
Then P(X x0

t ∈ dx) = p(t, x0; x)dx . By Lemma 18, the transition
density function p(t, x0; x) obeys that

∂tp(t, x0; x) = A∗p(t, x0; x), (t, x) ∈ (0,∞)× Rn; (27)
p(0, x0; x) = δx0(x), x ∈ Rn.
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation VII

If (b, σ) are smooth, we can expect to have a classical solution for
Eq. (27). Typically, when X x0 = x0 + W is an n-dimensional
Brownain motion starting at x0 ∈ Rn (i.e., b = 0 and σ = In×n), then

A = A∗ =
1
2∆.

Therefore, the forward equation (27) admits the classical solution
(Einstein (1905)): for (t, x) ∈ (0,∞)× Rn,

p(t, x0; x) =
1

(2π)
n
2
√
t
exp

(
−|x − x0|2

2t

)
,

p(0, x0; x) = δx0(x), x ∈ Rn.
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation VIII

The above p(t, x0; x) is also called a fundamental solution and this
yields that, Browanin Feller semigroup

Pt f (x0) =

∫
Rn

f (x)p(t, x0; x)dx , x0 ∈ R.

Question: Let X x be a OU process, i.e., for (t, x) ∈ (0,∞)× R,

X x
t = x +

∫ t

0
α(β − X x

s )ds + σWt ,

where α, σ > 0, β ∈ R, and W is a scalar Brownian motion. Solve
the forward Kolmogorov (26).
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Fokker-Planck-Kolmogorov Equations Non-Divergence Form of FPK Equations

Non-Divergence Form of FPK Equation I

Recall the adjoint operator given by, for f ∈ C∞0 (Rn),

A∗f (x) =
1
2

n∑
i ,j=1

∂2xi xj (aij(x)f (x))−
n∑

i=1
∂xi (bi (x)f (x)). (28)

Let us assume that (b, σ) is sufficiently smooth. Then
Subtract the coefficients of ∂xi f and ∂2xi ,xj f from A∗f , define

bi (x) :=

 n∑
j=1

∂xjaij(x)

− bi (x), i = 1, . . . , n;

g(x) :=
1
2

n∑
i ,j=1

∂2xi xjaij(x)−
n∑

i=1
∂xibi (x).
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Fokker-Planck-Kolmogorov Equations Non-Divergence Form of FPK Equations

Non-Divergence Form of FPK Equation II
Therefore, it holds that

A∗f (x) =
1
2

n∑
i ,j=1

aij(x)∂2xi xj f (x) +
n∑

i=1
bi (x)∂xi f (x) + g(x)f (x).

Then, the forward Kolmogorov equation (26) can be written as in:

The Non-Divergence Form: for (t, x) ∈ (0,∞)× Rn,

∂tp(t, x) =
1
2

n∑
i ,j=1

aij(x)∂2xi xjp(t, x) +
n∑

i=1
bi (x)∂xip(t, x) + g(x)p(t, x),

p(0, x) = u0(x), x ∈ Rn. (29)

The forward equation with non-divergence form becomes a Cauchy
problem which has been discussed in detail in Section of
Feynman-Kac Formula.
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Fokker-Planck-Kolmogorov Equations Non-Divergence Form of FPK Equations

Non-Divergence Form of FPK Equation III

In particular, we can refer to Chapter 4 of Friedman (1975) for a
general result on the fundamental solution of the uniformly elliptic
version of Cauchy problem (29).

Assumptions:
(A1) The adjoint operator A∗ is uniformly elliptic on Rn.

(A2) The coefficients a,b, g are bounded and continuous functions in Rn.

(A3) The coefficient a is Hölder continuous (exponent α ∈ (0, 1]) w.r.t. x ∈ Rn,
and b, g are Hölder continuous (exponent α ∈ (0, 1]) uniformly w.r.t. x in
compact sets of Rn.
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Non-Divergence Form of FPK Equation IV

Lemma (Theorem 1.4.2 in Friedman (1964))

Let (A1)-(A3) hold. Then, there exists a fundamental solution
G(t0, t; x0, x) (t0 < t) of Cauchy problem (29) satisfying, for all
f ∈ C0(Rn),

∂tG(t0, t; x0, x) = A∗G(t0, t; x0, x), if x ∈ Rn, t0 < t ≤ T ;∫
Rn

G(t0, t; x0, x)f (x0)dx0 → f (x), t ↓ t0.

Moreover, for k = (k1, . . . , kn) ∈ Nn with 0 ≤ |k| ≤ p and p ≥ 1,

∣∣∣∇k
xG(t0, t; x0, x)

∣∣∣ ≤ C |t − t0|−
n+|k|
2p exp

−K ( |x − x0|2p

t − t0

) 1
2p−1

 .
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Non-Divergence Form of FPK Equation V

However, we don’t like the boundedness constraint of a, b on Rn in
the assumption (A2).
We can apply Theorem 16 with only local condition of coefficients to
Cauchy problem (29). See the following example:

Example: Consider OU process, i.e., m = n = 1, b(x) = α(β − x), α > 0,
and σ(x) = σ > 0 for x ∈ R. Then b = −αβ + αx and g(x) = −α. Thus,
the forward equation with non-divergence form is given by

∂tp(t, x) =
σ2

2 ∆xp(t, x) + α(x − β)∂xp(t, x)− αp(t, x),

p0(x) = u0(x). (30)

Note that D = R = ∪∞k=1Dk with Dk := (−k, k) with smooth corners.
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Non-Divergence Form of FPK Equation VI

Then, the coefficients a, b, g satisfy the assumption in Theorem 16.
By Theorem 16, if for some p > 0,
(Aphi): u0 : R→ R is continuous and it satisfies

|u0(x)| ≤ C(1 + |x |p), x ∈ R,

then Cauchy problem (30) has a unique classical solution.
In fact, from our previous discussion, the fundamental solution of
Cauchy problem (30) admits a closed-form representation.
Question: Discuss the well-posedness of the forward equation with
non-divergence form for Geometric Brownian Motion.
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Fokker-Planck-Kolmogorov Equations Gradient Flow

History of Gradient Flows I

On May 3, 1941, Richard Courant gave an address to the AMS in
which he proposed three methods for numerically solving variational
PDEs.

Finite Element Method; Finite Difference Method; Gradient Method
Richard Courant (1888-1972): German-born American mathematician
and educator who made significant advances in the calculus of
variations.
Courant established one of America’s most prestigious institutes of
applied mathematics; upon his retirement the institute was named in
his honour.
Courant also wrote a two-volume elementary work on applied
calculus, Differential and Integral Calculus (1934; originally published
in German, 1927-29), and, with H. Robbins, a general work for the
layperson, What Is Mathematics? (1941).
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History of Gradient Flows II

Figure: Richard Courant (1888-1972)
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Fokker-Planck-Kolmogorov Equations Gradient Flow

History of Gradient Flows III

The idea arose in the study of variational PDEs. Each of these
equations has a function V : Rn → R s.t. a solution of the equation
is a minimizer of V .
The method of gradients starts with an initial point x0 ∈ Rn, and
seeks to find a minimizer of V by following a curve X x0 defined by
ODE:

dX x0
t = −∇V (X x0

t )dt, X x0
0 = x0.

It describes that the curve X x0 : [0,T ]→ Rn evolves in the direction
of steepest decent of the energy V .

Example: The energy functional V (x) = α
2 |x |

2 for α > 0 and x ∈ Rn.
Then, the gradient flow X x0

t = x0e−αt is the unique solution of the
gradient flow.

The solution X x0 is called an integral curve or gradient flow.
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History of Gradient Flows IV

Critical Point x∗ of V : if ∇V (x∗) = 0.

If the curve X x0
t is not a critical point of V , then X x0

t has the desirable
property that V is always decreasing along it:

d
dt V (X x0

t ) = ∇V (X x0
t )

dX x0
t

dt = − |∇V (X x0
t )|2 ≤ 0.

In addition, X x0 has the desirable property that for a large class of
functions it connects the initial point x0 to a critical point of V :

If V : Rn → R satisfies Palais-Smale condition, and is smooth, Lipschitz
continuously differentiable, bounded from below, and has isolated critical
points. Then, limt→∞ X x0

t exists and which is a critical point of V .
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History of Gradient Flows V

Palais-Smale condition satisfied by V : any subset D ⊂ Rn on which
V is bounded and on which ∇V is not bounded away from zero
contains in its closure a critical point of V .
An example of a function that does not satisfy Palais-Smale
condition: V (x) = e−x for x ∈ R. On D = [0,∞), V is bounded and
|∇V (x)| = e−x is not bounded away from zero, but V has no critical
point on R.
In the aspect of the forward Kolmogorov equation, the “random
version" of gradient flows result in a class of important FPK
equations.
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Gradient Flow I

It is well-known that the generator A = 1
2∆ of Brownian motion is

self-adjoint in L2(Rn), since Brownian motion is a reversible Markov
process.
We expect to find the class of Itô diffusion process whose generator is
self-adjoint in a right space.
Let V : Rn → R be a smooth function. Consider the following Itô
diffusion process given by, for x0 ∈ Rn,

X x0
t = x0 −

∫ t

0
∇V (X x0

s )ds +
√
2σWt , t ≥ 0 (31)

where σ > 0 and ∇ = ∇x is the gradient operator.
If σ = 0, dX x0

t = −∇V (X x0
t )dt corresponds to the deterministic

gradient flow for a curve X x0 : [0,T ]→ Rn.
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Gradient Flow II

V is in general called a potential or an energy. Note that V (x) = αx2

2
for x ∈ R corresponds to Langevin equation.

The generator of X x0
t is given by

Af (x) = −∇V (x) · ∇f (x) + σ∆f (x)

The stochastic gradient flow (31) admits a unique invariant measure:

Lemma (Gibbs distribution)

Let e−V (·)/σ ∈ L1(Rn). Then, the stochastic gradient flow (31) has a
unique invariant density given by

π(x) =
1
Γ
e−

V (x)
σ , x ∈ Rn, Γ :=

∫
Rn

e−
V (x)
σ dx . (32)

The density function π(x) given by (32) is called Gibbs distribution.
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Gradient Flow III

Proof. It is straightforward to verify
∫
Rn (Af (x))π(x)dx = 0 for all

f ∈ D(A) (D(A) = C2
0 (Rn)). This yields that∫

Rn
(−∇V (x)∇f (x) + σ∆f (x))π(x)dx = 0 (33)

⇓∫
Rn
{(−∇V (x)∇f (x))π(x)− σ∇f (x)∇π(x)}dx = 0 (34)

For the uniqueness, the ergodic theory of Markov processes can be
used.
We next discuss the role of Gibbs distribution played in the study of
forward Kolmogorov equations.
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Gradient Flow IV

By (28), the adjoint operator of A is given by

A∗f (x) =
n∑

i=1
∂xi (∂xiV (x)f (x)) + σ∆f (x)

= f (x)
n∑

i=1
∂2xiV (x) +

n∑
i=1

∂xiV (x)∂xi f (x) + σ∆f (x)

= f (x)∆V (x) + 2∇V (x) · ∇f (x)

−∇V (x) · ∇f (x) + σ∆f (x)︸ ︷︷ ︸
==Af (x)

-Non-Divergence

= ∇ · ((∇V )(x)f (x)) + σ∆f (x). (35)

The forward Kolmogorov equation becomes that, for p := p(t, x),

∂tp = ∇ · ((∇V )p) + σ∆p, p0 = u0 (36)
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Gradient Flow V

We can implement a transform using Gibbs distribution for the
solution of the forward Kolmogorov equation. After this transform,
the resulting equation is the backward Kolmogorov equation:

Define q(t, x) := π(x)−1p(t, x). Then, q satisfies the following backward
Kolmogorov equation given by, for (t, x) ∈ (0,∞)× Rn,

∂tq(t, x) = Aq(t, x), q(0, x) =
u0(x)

π(x)
, x ∈ Rn. (37)

We will leave the verification of the backward Kolmogorov equation
(37) to a Question.
Consequently, in order to study properties of solutions to the forward
equation, it is sufficient to study the backward equation (37).
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Gradient Flow VI

Since A∗f = Af + f ∆V + 2∇f∇V , A is not self-adjoint in L2(Rn).
Even if A is not self-adjoint in L2(Rn), we can find a right space
under which A is self-adjoint using Gibbs distribution.
The right space is the following weight L2-space as follows:

L2π(Rn) :=

{
φ : Rn → R;

∫
Rn
|φ(x)|2π(x)dx <∞

}
L2π(Rn) is a Hilbert space with inner product

〈g , φ〉π :=

∫
Rn

g(x)φ(x)π(x)dx .
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Gradient Flow VII

The following lemma proves that A is indeed self-adjoint in L2π(Rn).

Lemma (Self-Adjoint in L2π(Rn))

Let e−V (·)/σ ∈ L1(Rn). Then, A = −∇V · ∇+ σ∆ is self-adjoint in
L2π(Rn) and satisfies
(i) 〈Af , g〉π = −σ〈∇f ,∇g〉π for all f , g ∈ C2

0 (Rn);

(ii) A is negative.

Proof. It is suffices to verify (i), which can be derived directly from
A = −∇V · ∇+ σ∆. By (34), we have

〈Af , g〉π =

∫
Rn

(−∇V · ∇f (x) + σ∆f (x))g(x)π(x)dx

=

∫
Rn

(−∇V · ∇f (x))π(x)g(x)dx + σ

∫
Rn

∆f (x)g(x)π(x)dx
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Gradient Flow VIII

=

∫
Rn

(−∇V · ∇f (x))π(x)g(x)dx − σ
∫
Rn
∇f (x)∇(g(x)π(x))dx

=

∫
Rn
{(−∇V · ∇f (x))π(x)− σ∇f (x)∇π(x)}g(x)dx︸ ︷︷ ︸

=0 using (34)

−σ〈∇f ,∇g〉π

= −σ〈∇f ,∇g〉π⇒〈Af , g〉π = −σ〈∇f ,∇g〉π = 〈Ag , f 〉π.

By (i), 〈Af , f 〉π = −σ‖∇f ‖2π ≤ 0 since σ > 0, which yields (ii).
Thus, we complete the proof of the lemma.
In the context of Markov processes, 〈−Af , f 〉π is called Dirichlet
Form.
We next show that the solution of the forward Kolmogorov equation
converges to Gibbs distribution exponentially fast:
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Gradient Flow IX

The main tools are the following Poincare inequality and the
backward Kolmogorov equation (37).

Assume that the potential V additionally satisfies `-convexity condition:
there exists ` > 0 s.t. ∇2V (x) ≥ `I for all x ∈ Rn. If g ∈ C1(Rn) satisfies
〈g , 1〉π = 0, then ‖g‖2π ≤ `−1‖∇g‖2π.

Now, assume that the initial density u0 of the forward Kolmogorov
equation satisfies u0/π ∈ L2π(Rn).

Theorem (Large Time behavior Solution of Forward Kolmogorov Equation)

For any t ≥ 0, it holds that

‖p(t, ·)− π(·)‖π−1 ≤ e−`σt ‖u0(·)− π(·)‖π−1 .
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Gradient Flow X
Proof. Recall q(t, x) = π(x)−1p(t, x) which satisfies the backward
Kolmogorov equation (37).
Then, using Lemma 21, we have

‖p(t, ·)− π(·)‖2π−1 =

∫
Rn
|q(t, x)− 1|2π(x)dx = ‖q(t, ·)− 1‖2π

In order to apply the above Poincare inequality, we need to verify∫
Rn (q(t, x)− 1)π(x)dx = 0 for all t > 0.
In fact, we get

∂t

(∫
Rn

q(t, x)π(x)dx
)

=

∫
Rn
∂tq(t, x)π(x)dx

=

∫
Rn
Aq(t, x)π(x)dx = 〈Aq(t, ·), 1〉π

(i)
== −σ〈∇q(t, ·),∇1〉π = 0.
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Gradient Flow XI

Note that
∫
Rn q(0, x)π(x)dx =

∫
Rn u0(x)dx = 1.

Taking derivative on both sides of the above equality w.r.t. t, we have

∂t‖q(t, ·)− 1‖2π = 2 〈∂tq(t, ·), q(t, ·)− 1〉π
(37)
= 2 〈Aq(t, ·), q(t, ·)− 1〉π
A1=0
== 2 〈A(q(t, ·)− 1), q(t, ·)− 1〉π

(i)
== −2σ‖∇(q(t, ·)− 1)‖2π
Poincare
≤ −2σ`‖q(t, ·)− 1‖2π.

As a summary

∂t ‖p(t, ·)− π(·)‖2π−1 ≤ −2σ`‖q(t, ·)− 1‖2π.
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Expansive Solution of FPK Equation I

Let V : Rn → R be a smooth potential satisfying
e−V (·)/σ ∈ L1(Rn);
∇2V (x) ≥ `I for all x ∈ Rn.

Then, by Lemma 21, for the operator A = −∇V · ∇+ σ∆, we have
(i) A is a negative and self-adjoint operator on L2π(Rn);
(ii) For g ∈ C1(Rn) with 〈g , 1〉π = 0, a spectral gap is given by

‖〈Ag , g〉‖2π = −σ‖∇g‖2π ≤ −σ`‖g‖2π.

The spectral problem of −A is as follows:

−Agk = λkgk , k = 0, 1, . . . ,

The operator −A admits real, discrete spectrum satisfying
0 = λ0 < λ1 < λ2 < · · · ;
The eigenfunctions (gk)k≥0 form an orthonormal basis in L2π(Rn).
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Expansive Solution of FPK Equation II

This implies that for any φ ∈ L2π(Rn),

φ =
∞∑

k=0
φkgk , φk = 〈φ, gk〉π. (38)

We seek the solution q(t, x) = π(x)−1p(t, x) of the backward
Kolmogorov equation (37) in the following form:

q(t, x) =
∞∑

k=0
qk(t)gk(x).
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Expansive Solution of FPK Equation III

Plugging the above q(t, x) into the backward Kolmogorov equation
(37), we get

∂tq(t, x) =
∞∑

k=0
∂tqk(t)gk(x) =

∞∑
k=0

qk(t)Agk(x)

= −
∞∑

k=0
qk(t)λkgk(x).

Therefore, for j ≥ 0,
∞∑

k=0
∂tqk(t)

(∫
Rn

gk(x)gj(x)π(x)dx
)

= −
∞∑

k=0
λkqk(t)

(∫
Rn

gk(x)gj(x)π(x)dx
)
.
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Expansive Solution of FPK Equation IV

As a summary, for j ≥ 0,
∞∑

k=0
∂tqk(t)〈gk , gj〉π = −

∞∑
k=0

λkqk(t)〈gk , gj〉π.

We then conclude the equations

∂tqj(t) = −λjqj(t), j = 0, 1, . . . .

Assume that q(0, x) = u0(x)
π(x) ∈ L2π(Rn).

Then, by (38), we get

q(0, x) =
∞∑

k=0
l0kgk(x), l0k = 〈q(0, ·), gk〉π. (39)
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Expansive Solution of FPK Equation V

Thus, we obtain

∂tqj(t) = −λjqj(t), qj(0) = l0j , j = 0, 1, . . . . (40)

The solution of (40) is given by, for t ≥ 0,

q0(t) = l00 = 1, qj(t) = l0je−λj t , j = 1, 2, . . . . (41)

Therefore, the solution of the backward Kolmogorov equation is as
follows:

π(x)−1p(t, x) = q(t, x) = 1 +
∞∑

j=1
l0je−λj tgj(x)
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Expansive Solution of FPK Equation VI

Then, the forward Kolmogorov equation (36) admits the following
expansive form:

p(t, x) = π(x) + π(x)

1 +
∞∑

j=1
l0je−λj tgj(x)

 . (42)
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Propagation of Chaos FPK Equations and Particle System

FPK Equations and Particle System I

In the previous Chapter: FPK Equations, an important problem which
is not discussed is the uniqueness of solutions of FPK equation. This
issue can be studied by the approach of Martingale Problem.
We here introduce the method of Propagation of Chaos on FPK
equation. This in particularly implies the uniqueness of the FPK
equation.
Propagation of chaos is in fact establishing the convergence of the
empirical measure of a particle system to the solution to a nonlinear
equation, was first formulated by Kac (1956):

Kac (1956): Foundations of Kinetic Theory. In Proceedings of the
Third Berkeley Symposium on Mathematical Stats. and Probab.,
1954-1955, vol. III, pages 171-197. University of California Press,
Berkeley and Los Angeles.

Kac (1956) studies the convergence of a toy particle system as a step
to the rigorous derivation of the Boltzmann equation.
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FPK Equations and Particle System II

Let us start with a review of the FPK equation discussed in Chapter:
FPK Equations, which is given by (25) in Lemma 18, i.e., for all
f ∈ C∞0 (Rn),

〈µt , f 〉 = 〈ρ0, f 〉+

∫ t

0
〈µs ,Af 〉ds, t ∈ [0,T ]

where ρ0 ∈ P(Rn), and T > 0 is an arbitrary time horizon.
The operator A is the second-order differential operator
corresponding to the generator of the following Itô diffusion process
given by, for (t, x) ∈ [0,T ]× Rn,

X x
t = x +

∫ t

0
b(X x

s )ds +

∫ t

0
σ(X x

s )dWs .
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FPK Equations and Particle System III
As it is proved in Lemma 18, the following probability measure valued
function (µt)t∈[0,T ] is a solution of FPK equation (25):

µt(dx) =

∫
Rn

E
[
δX x0

t
(dx)

]
ρ0(dx0), on B(Rn). (43)

If the uniqueness holds, then the solution of FPK equation (25) must
be form (43).

Propagation of Chaos: Establish a particle system which includes N
particles. For i = 1, . . . ,N, the state (e.g. position, velocity and so on)
process of the i-th particle is given by a process (X i

t )t∈[0,T ]. Define the
empirical measure-valued process as µN

t := 1
N
∑N

i=1 δX i
t
for t ∈ [0,T ]. For

an arbitrary solution µ = (µt)t∈[0,T ] of FPK equation (25), find an
increasing function α : R+ → R+ with α(0) = 0 s.t.
dT (µN , µ) ≤ α(N−1), where dT (·, ·) is a suitable metric.
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FPK Equations and Particle System IV

If the propagation of chaos is established, then for any two different
solutions µ = (µt)t∈[0,T ] and ν = (νt)t∈[0,T ] of FPK equation (25),
we have limN→∞ µ

N = µ and limN→∞ µ
N = ν w.r.t. dT .

Then d(µ, ν) ≤ d(µN , µ) + d(µN , ν)→ 0 as N →∞, this yields that
µ = ν, i.e., uniqueness holds.
We next construct a (homogeneous) particle system required in the
propagation of chaos.
Let the number of particles be N ≥ 1. For i = 1, . . . ,N, the dynamics
of the state of the i-th particle is given by

dX i
t = b(X i

t )dt + σ(X i
t )dW i

t , X i
0 ∈ Rn. (44)

Here W i = (W i
t )t∈[0,T ], i = 1, . . . ,N and W = (Wt)t∈[0,T ] are

independent (m-dimensional) Brownian motions under the filtered
probability space (Ω,F ,F,P).
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FPK Equations and Particle System V

The initial values (X i
0)i≥1 is assumed to satisfy that

(A)X i
0
Let q ≥ 2. The sequence of r.v.s (X i

0)i≥1 is i.i.d. according to the
probability distribution ρ0 ∈ Pp(Rn) for some p > q.

Equip Pp(Rn) with Wasserstein distance Wp: for µ, ν ∈ Pp,

Wp(µ, ν) =



(
inf

π∈Π(µ,ν)

∫
Rn×Rn

|x − y |pπ(dx , dy)

) 1
p

, p ≥ 1;

inf
π∈Π(µ,ν)

∫
Rn×Rn

|x − y |pπ(dx , dy), 0 < p < 1,

where Π(µ, ν) is the set of π ∈ P(R2n) s.t. π(A× Rn) = µ(A) and
π(Rn × B) = ν(B) for all A,B ∈ B(Rn).
Then, by Villani (2003), (Pp(Rn),Wp) is a Polish space since
(Rn, | · |) is Polish.
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Propagation of Chaos FPK Equations and Particle System

FPK Equations and Particle System VI
As is well-known, under the assumption (A)X i

0
, by Glivenko-Cantelli’s

theorem, the empirical measure µN
0 := 1

N
∑N

i=1 δX i
0
tends weakly to ρ0

as N →∞.
Moreover, Theorem 1 in Fournier and Guillin (2015) yields that, there
is a constant C depending only on n, p, q such that

E
[
Wq(µN

0 , ρ0)q
]
≤ C

(∫
D
|x |pρ0(dx)

) q
p
α(p, q, n,N). (45)

Figure: A reference paper by Fournier and Guillin (2015)
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Propagation of Chaos FPK Equations and Particle System

FPK Equations and Particle System VII

The main convergence rate α(p, q, n,N) is given by

α(p, q, n,N) :=



N−
1
2 + N−

p−q
p , q > n

2 , p 6= 2q;

N−
1
2 ln(1 + N) + N−

p−q
p , q = n

2 , p 6= 2q;

N−
q
n + N−

p−q
p , q < n

2 , p 6=
n

n−q .

We next establish the propagation of chaos by introducing a so-called
propagator corresponding to FPK equation (25).
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation I

The propagator of FPK equation (25) is defined as: for
(t, x) ∈ [0,T ]× Rn,

Pg
t,Tφ(x) := E

[
φ(X t,x

T ) exp
(∫ T

t
g(X t,x

s )ds
)]

. (46)

The process (X t,x
s )s∈[t,T ] satisfies: for (t, x) ∈ [0,T ]× Rn,

X t,x
s = x +

∫ s

t
b(X t,x

r )dr +

∫ s

t
σ(X t,x

r )dWs , s ∈ [t,T ].

Question: Verify that (Pg
0,T )T≥0 is a semigroup. Provide conditions

under which (Pg
0,T )T≥0 is a Feller semigroup.

The propagator (46) is the same to the representation of u(t, x) in
(22) with f ≡ 0.
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation II

Then, we can apply Theorem 16 [General Feynman-Kac Formula] to
study the smoothness of the propagator (t, x)→ Pt,Tφ(x).
To this purpose, we review the assumptions imposed in Theorem 16
(with D = Rn):

(HSfgphi) g : Rn → R is continuous and is bounded from above,
φ : Rn → R are continuous which satisfying
|φ(x)| ≤ C(1 + |x |p) for C , p > 0;

(HSXmoment) E [sups∈[t,T ] |X
t,x
s |q] ≤ C |x |q for all q ≥ 1.

If p = 0 in (HSfgphi), then we don’t need (HSXmoment).
Under the assumption (Alip), we also review

(AHS) (AHSba): The operator A is uniformly elliptic in
Dk = (−k, k)n, i.e., there is a lk > 0 s.t.
ξ>a(x)ξ ≥ lk |ξ|2 for all x ∈ Dk and ξ ∈ Rn;
(AHSfg): g is Hölder continuous on Dk .
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation III

Then, Theorem 16 gives the smoothness of the propagator of Pg
t,Tφ:

Lemma (Smoothness of Propagator)

Under the above assumptions, the propagator of Pg
·,Tφ(·) ∈ C1,2, and it

also satisfies the following Cauchy problem:

(∂t +A+ g)Pg
t,Tφ(x) = 0, (t, x) ∈ [0,T )× Rn;

Pg
T ,Tφ(x) = φ(x), x ∈ Rn. (47)

Proof. The proof follows completely by verifying the assumptions
imposed in Theorem 16.
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation IV

We can also have the estimate of the gradient ∇xPt,Tφ under the
additional assumption on the Lipschitz-continuity of g :

Lemma (Gradient Estimate of Propagator)

Assume additionally that g : Rn → R is Lipschitz continuous. Then, there
exists a positive constant Kb,σ,T depending only on T and the Lipschitz
coefficient b, σ s.t., for all φ ∈ Lip(Rn) with ‖φ‖∞ := supx∈Rn |φ(x)| ≤ C,∥∥∥∇xPg

t,Tφ
∥∥∥
∞
≤ Kb,σ,T , ∀ t ∈ [0,T ]. (48)

Proof. Note that the Lipschitzian property of g , g is bounded from
above and ‖φ‖∞ ≤ 1.
W.L.O.G. let g(x) ≤ 0 for all x ∈ Rn.
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation V

Then, for all x1, x2 ∈ Rn,∣∣∣Pg
t,Tφ(x1)− Pg

t,Tφ(x2)
∣∣∣2 (49)

≤ 2E
[∣∣φ(X t,x1

T )− φ(X t,x2
T )

∣∣2 exp(2 ∫ T

t
g(X t,x

s )ds
)]

+ 2E

∣∣φ(X t,x2
T )

∣∣2 ∣∣∣∣∣exp
(∫ T

t
g(X t,x1

s )ds
)
− exp

(∫ T

t
g(X t,x2

s )ds
)∣∣∣∣∣

2


≤ 2‖φ‖LipE
[∣∣X t,x1

T − X t,x2
T
∣∣2]+ 8TC2‖g‖2LipE

[∫ T

t

∣∣X t,x1
s − X t,x2

s
∣∣2 ds] .
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation VI

By the assumption (Alip) gives that

E
[

sup
s∈[t,T ]

∣∣X t,x1
s − X t,x2

s
∣∣2] ≤ |x1 − x2|2

+ Cb,σ,T

∫ T

t
E
[∣∣X t,x1

s − X t,x2
s
∣∣2] ds.

Then, the Gronwall’s lemma yields that

E
[

sup
s∈[t,T ]

∣∣X t,x1
s − X t,x2

s
∣∣2] ≤ |x1 − x2|2e(T−t)Cb,σ,T . (50)
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation VII

It follows from (49) and (50) that, for all x1, x2 ∈ Rn,∣∣∣Pg
t,Tφ(x1)− Pg

t,Tφ(x2)
∣∣∣2

≤ 2
(
‖φ‖Lip + 4T 2C2‖g‖2Lip

)
eTCb,σ,T |x1 − x2|2. (51)

Since P·,Tφ is the classical solution of Cauchy problem (47), we have
P·,Tφ ∈ C1,2.
Then, the estimate (51) yields that the gradient estimate (48) by
taking Kb,σ,T :=

√
2(‖φ‖Lip + 4T 2C2‖g‖2Lip)eTCb,σ,T .

Thus, we complete the proof of the lemma.
What is the role of the propagator Pg

t,Tφ in the construction of the
propagation of chaos?
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation VIII

We in fact have the following important observation on the relation
between µt and P0

t,Tφ (when g ≡ 0) given as follows:

An important observation (the proof is non-trivial): for all φ : Rn → R
satisfying (HSfgphi), it follows from (47) that

∂t〈µt ,P0
t,Tφ〉 = 〈∂tµt ,P0

t,Tφ〉+ 〈µt , ∂tP0
t,Tφ〉

= 〈µt ,AP0
t,Tφ〉+ 〈µt , ∂tP0

t,Tφ〉
= 〈µt , (∂t +A)P0

t,Tφ〉 = 0. (52)

This yields that

〈µt ,P0
t,Tφ〉 = 〈ρ0,P0

0,Tφ〉, ∀ t ∈ [0,T ]. (53)
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation IX

The propagator P0
t,Tφ establishes the following relation satisfied by

µN
T − µT for any fixed T > 0:

Theorem (Decomposition of 〈µN
T − µT , φ〉)

Let the above assumptions gold. Then, for any fixed T > 0, and all
φ : Rn → R satisfying (HSfgphi),〈

µN
T − µT , φ

〉
=
〈
µN
0 − µ0,P0

0,Tφ
〉

(54)

+
1
N

N∑
i=1

∫ T

0
∇xPs,Tφ(X i

s )>σ(X i
s )dW i

s .

Proof. Recall the state process of the particle system X i = (X i
t )t∈[0,T ]

defined by (44) for i ≥ 1.
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation X

Lemma 27 allows us to apply Itô’s formula to P0
t,Tφ(X i

t ), and we have
that, for t ∈ [0,T ],

P0
t,Tφ(X i

t ) = P0
0,Tφ(X i

0) +

∫ t

0
(∂s +A)P0

s,Tφ(X i
s )ds

+

∫ t

0
∇xP0

s,Tφ(X i
s )>σ(X i

s )dW i
s .

Note that (∂t +A)P0
t,Tφ = 0, therefore

1
N

N∑
i=1

P0
t,Tφ(X i

t ) =
1
N

N∑
i=1

P0
0,Tφ(X i

0)

+
1
N

N∑
i=1

∫ t

0
∇xP0

s,Tφ(X i
s )>σ(X i

s )dW i
s .
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Propagation of Chaos Propagator of FPK Equation

Propagator of FPK Equation XI

Recall that µN
t := 1

N
∑N

i=1 δX i
t
. Then, we have

〈µN
t ,P0

t,Tφ〉 = 〈µN
0 ,P0

0,Tφ〉+
1
N

N∑
i=1

∫ t

0
∇xP0

s,Tφ(X i
s )>σ(X i

s )dW i
s .

By (53), i.e., 〈µt ,P0
t,Tφ〉 = 〈ρ0,P0

0,Tφ〉 for all t ∈ [0,T ].

〈µN
t ,P0

t,Tφ〉 − 〈µt ,P0
t,Tφ〉 = 〈µN

0 ,P0
0,Tφ〉 − 〈ρ0,P0

0,Tφ〉

+
1
N

N∑
i=1

∫ t

0
∇xP0

s,Tφ(X i
s )>σ(X i

s )dW i
s .

By taking t = T and note that P0
T ,Tφ = φ, we have (94).

Thus we complete the proof of the theorem.
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ I

For p ≥ 1, recall that Wp is Wasserstein metric with p-order on
Pp(Rn).
For q ≥ 2, define Sp,q,T as the set of P(Rn)-valued processes
ν = (νt)t∈[0,T ] such that

E
[

sup
t∈[0,T ]

(∫
Rn
|x |pνt(dx)

) q
p
]
<∞.

For p ≥ 1 and q ≥ 2, introduce the metric on Sp,q,T as follows: for
all ν1, ν2 ∈ Sp,q,T ,

dp,q,T (ν1, ν2) :=

{
E
[

sup
t∈[0,T ]

Wp
(
ν1t , ν

2
t
)q]} 1

q

. (55)
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ II

Consider p = 1 and using the Kantorovich-Rubinstein dual formula
(see Villani (2003)),

d1,q,T (ν1, ν2) =

{
E
[

sup
t∈[0,T ]

W1
(
ν1t , ν

2
t
)q]} 1

q

(56)

=

{
E
[

sup
t∈[0,T ]

(
sup
φ∈R1

∫
Rn
φ(x)

(
ν1t (dx)− ν2t (dx)

))q]} 1
q

where R1 is the set of Lipschitz functions φ : Rn → R with the
Lipschitz coefficient

‖φ‖Lip := sup
x ,y∈Rn, x 6=y

|φ(x)− φ(y)|
|x − y | ≤ 1.
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ III

In the metric (56), R1 can be replaced with Rb
1 which is the set of

bounded functions φ ∈ R1, see Villani (2003).
We can further reduces the set R1 in the metric d1,q,T to the set
Rb,1

1 which is the set of Lipschitz functions φ : Rn → R with
‖φ‖Lip + ‖φ‖∞ ≤ 1. In other words, we have non-decreasing sets:

Rb,1
1 ⊂ Rb

1 ⊂ R1.

The metric d1,q,T with R1 replaced by Rb,1
1 becomes that

dBL
1,q,T (ν1, ν2) (57)

:=

E

 sup
t∈[0,T ]

 sup
φ∈Rb,1

1

∫
Rn
φ(x)

(
ν1t (dx)− ν2t (dx)

)q
1
q
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ IV

The distance dBL
1,q,T is called Fortet-Mourier distance (see Section

11.2 of Dudley (2004), page 390).
Then (S1,q,T , dBL

1,q,T ) is a complete metric space.
We next introduce a weaker metric.
As in Lucon and Stannat (2014) AAP, we establish a metric dq,T
between µ = (µt)t∈[0,T ] and µN = (µN

t )t∈[0,T ] as

dq,T (µ, νN) := sup
t∈[0,T ]

dBL(µt , µ
N
t ). (58)

dBL is a metric for P(Rn)-valued r.v.s, which is defined as

dBL(µt , µ
N
t ) := sup

ψ∈Rb,1
1

E
[∣∣∣∣∫

Rn
ψ(x)(µt − µN

t )(dx)

∣∣∣∣q] 1
q
. (59)
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ V

Here, we work with the construction of the propagation of chaos
under the distance dq,T defined by (57).

Theorem (Propagation of Chaos)

Recall the assumption (A)X i
0
with additional assumptions discussed in this

chapter. Then, for any T > 0 and N ≥ 1, there exists a constant C > 0
which is independent of N such that

dq,T (µ, µN) ≤ C
[(∫

D
|x |pρ0(dx)

) q
p
α(p, q, n,N) +

1
Nq−1

]
, q ≥ 2,

where the first convergence rate α(p, q, n,N) is given by (45).

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 154 / 291



Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ VI

Proof. Using (94), it results in, for all φ ∈ Rb,1
1 ,〈

µN
T − µT , φ

〉
=
〈
µN
0 − µ0,P0

0,Tφ
〉

+
1
N

N∑
i=1

∫ T

0
∇xP0

s,Tφ(X i
s )>σ(X i

s )dW i
s . (60)

Let φ0 := K−1b,σ,TP0
0,Tφ. Then, by applying the estimate (48) in

Lemma 24, we obtain that ‖φ0‖Lip ≤ 1.
Then, it follows from Kantorovich-Rubinstein dual formula that, for
q ≥ 2,

E
[∣∣∣〈µN

0 − µ0,P0
0,Tφ

〉∣∣∣q] = Kb,σ,TE
[∣∣∣〈µN

0 − µ0, φ0
〉∣∣∣q]

≤ Kb,σ,TE
[
W1(µN

0 , ρ0)q
]
≤ Kb,σ,TE

[
Wq(µN

0 , ρ0)q
]
.
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ VII

By the convergence rate estimate (45) under the assumption (A)X i
0
,

it holds that

E
[∣∣∣〈µN

0 − µ0,P0
0,Tφ

〉∣∣∣q] ≤ Kb,σ,TE
[
Wq(µN

0 , ρ0)q
]

≤ Kb,σ,TC
(∫

D
|x |pρ0(dx)

) q
p
α(p, q, n,N).

Here, the constant C > 0 which is independent of N is given in (45).
We next estimate the 2nd term of the r.h.s. of the equality (60).
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ VIII

Using the estimate (48) in Lemma 24, the BDG inequality yields that,
for q ≥ 2,

E

 sup
t∈[0,T ]

∣∣∣∣∣ 1N
N∑

i=1

∫ t

0
∇xP0

s,Tφ(X i
s )>σ(X i

s )dW i
s

∣∣∣∣∣
q

≤ Cq,T
Nq

N∑
i=1

E

(∫ T

0

∣∣∣∇xP0
s,Tφ(X i

s )
∣∣∣2 ∣∣∣σ(X i

s )
∣∣∣2 ds)q/2


≤ Cq,T

Nq

N∑
i=1

E

(∫ T

0

∥∥∥∇xP0
s,Tφ

∥∥∥2
∞

∣∣∣σ(X i
s )
∣∣∣2 ds)q/2


≤ Cq,T

Nq−1T
q
2−1Kq

b,σ,T

(∫ T

0
E
[
1
N

N∑
i=1
|σ(X i

s )|q
]
ds
)
. (61)
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ IX

Using the assumption (Alip) and (A)X i
0
, we have

sup
t∈[0,T ]

E
[
1
N

N∑
i=1
|σ(X i

t )|q
]
≤ CT

{
1 + sup

t∈[0,T ]
E
[
1
N

N∑
i=1
|X i

t |q
]}

X i i .i .d .
=== CT

{
1 + sup

t∈[0,T ]
E
[
|X 1

t |q
]}

<∞.

Thus, we complete the proof of the theorem.
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between µN and µ X

Question: Let us assume that σ(x) ≡ σ ∈ Rn×m. At the moment,
can you relax the assumption (Alip) on the coefficient b so that the
propagation of chaos still holds? For instant, when b satisfies the
so-called one-sided Lipschitz condition, i.e.,

(x1 − x2)>(b(x1)− b(x2)) ≤ L|x1 − x2|2, x1, x2 ∈ Rn, (62)

where the coefficient L ∈ R.
Hints: One of main argument is to establish a sequence of functions
(bn)n≥1 which have the same regularity to that of b such that bn → b
as n→∞ in some sense. The key point is to find a constant C > 0
independent of n s.t.

dq,T (µN,n, µn) ≤ Cα(1/N).
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation I

Let us introduce the following particle system with mean field: for
i = 1, . . . ,N,

dX i
t = b(X i

t ,X
ρ
t )dt + σ(X i

t ,X
ρ
t )dW i

t , X i
0 ∈ Rn. (63)

The random variables X i
0, i ≥ 1, are i.i.d. with common law

ρ0 ∈ P(Rn).
The mean-field term is defined as

Xρ
t :=

1
N

N∑
i=1

ρ(X i
t ), (64)

where ρ : Rn → R is a Lipschitz function.
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation II
The empirical measure-valued process related to the particle system
(63) is defined as:

µN
t :=

1
N

N∑
i=1

δX i
t
, on B(Rn).

Then, the state process of particle system (X i )i≥1 can be rewritten as:

dX i
t = b(X i

t , 〈µN
t , ρ〉)dt + σ(X i

t , 〈µN
t , ρ〉)dW i

t , X i
0 ∈ Rn. (65)

Question: Let the coefficients (b, σ, ρ) satisfy the assumption
(Ab,σ,ρ) b : Rn × R→ R, σ : Rn × R→ Rn×n and ρ : Rn → R

are Lipschitz continuous with linear growth, i.e.,
|b(x , z)| ∨ |σ(x , z)| ∨ |ρ(x)| ≤ C(1 + |x |) for all
(x , z) ∈ Rn × R.

Prove that the system (65) admits a unique strong solution.
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation III

What is the limit of µN = (µN
t )t∈[0,T ] as N →∞?

In order to address this issue, we follow the similar argument to that
used in the derivation of the forward Kolmogorov equation.
To this purpose, define the operator as: for (x , µ) ∈ Rn × P1(Rn),
and f ∈ C2(Rn),

Aµf (x) := b(x , 〈µ, ρ〉)>∇x f (x) +
1
2tr[σσ

>(x , 〈µ, ρ〉)∇2
x f (x)]. (66)

For any f ∈ C2
b (Rn), we have from Itô formula that

〈µN
t , f 〉 = 〈µN

0 , f 〉+

∫ t

0
〈µN

s ,Aµ
N
s f 〉ds

+
1
N

N∑
i=1

∫ t

0
∇x f (X i

s )>σ(X i
s )dW i

s
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation IV

Formally, using Martingale Convergence Theorem, a.s, N →∞,

1
N

N∑
i=1

∫ t

0
∇x f (X i

s )>σ(X i
s )dW i

s → 0

Then, we have as N →∞,

The McKean-Vlasov equation:

〈µt , f 〉 = 〈µ0, f 〉+

∫ t

0
〈µs ,Aµs f 〉ds, t ∈ [0,T ]. (67)

A little bit of history:
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation V

The story of these processes started with a stochastic toy model for
the Vlasov equation of plasma proposed by Mark Kac in his paper
“Foundations of kinetic theory (1956)".
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation VI

Figure: Henry P. McKean (1930-)

In 1966, Henry P. McKean published his seminal paper “A class of
Markov processes associated with non-linear parabolic equations".
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation VII

We have two issues which should be addressed:
(Q1) Well-posedness of the McKean-Valsov equation (67).
(Q2) Propagation of Chaos of the McKean-Valsov equation (67).
We can apply the similar argument to that in the study of the
propagation of chaos of FPK equations.
Recall (55), (56) and (57) in the previous section:
For p ≥ 1 and q ≥ 2, introduce the metric on Sp,q,T as follows: for
all ν1, ν2 ∈ Sp,q,T ,

dp,q,T (ν1, ν2) :=

{
E
[

sup
t∈[0,T ]

Wp
(
ν1t , ν

2
t
)q]} 1

q

.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 166 / 291



Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation VIII

Consider p = 1 and using the Kantorovich-Rubinstein dual formula
(see Villani (2003)),

d1,q,T (ν1, ν2) =

{
E
[

sup
t∈[0,T ]

W1
(
ν1t , ν

2
t
)q]} 1

q

=

{
E
[

sup
t∈[0,T ]

(
sup
φ∈R1

∫
Rn
φ(x)

(
ν1t (dx)− ν2t (dx)

))q]} 1
q

where R1 is the set of Lipschitz functions φ : Rn → R with the
Lipschitz coefficient

‖φ‖Lip := sup
x ,y∈Rn, x 6=y

|φ(x)− φ(y)|
|x − y | ≤ 1.
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation IX

In the metric (56), R1 can be replaced with Rb
1 which is the set of

bounded functions φ ∈ R1, see Villani (2003).
We can further reduces the set R1 in the metric d1,q,T to the set
Rb,1

1 which is the set of Lipschitz functions φ : Rn → R with
‖φ‖Lip + ‖φ‖∞ ≤ 1. In other words, we have an non-decreasing sets:

Rb,1
1 ⊂ Rb

1 ⊂ R1.

The metric d1,q,T with R1 replaced by Rb,1
1 becomes that

dBL
1,q,T (ν1, ν2)

:=

E

 sup
t∈[0,T ]

 sup
φ∈Rb,1

1

∫
Rn
φ(x)

(
ν1t (dx)− ν2t (dx)

)q
1
q

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 168 / 291



Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation X

The distance dBL
1,q,T is called Fortet-Mourier distance (see Section

11.2 of Dudley (2004), page 390).
Then (S1,q,T , dBL

1,q,T ) is a complete metric space.
Therefore, we introduce the following Itô SDE: for x0 ∈ Rn and
ν ∈ S1,q,T ,

X x0,ν
t = x0 +

∫ t

0
b(X x0,ν

s , 〈νs , ρ〉)ds +

∫ t

0
σ(X x0,ν

s , 〈νs , ρ〉)dWs . (68)

Let us define that

Lνt (dx) =

∫
Rn

E
[
δX x0,ν

t
(dx)

]
ρ0(dx0) (69)

Question: For any ν ∈ S1,q,T , provide a mild condition on ρ0 ∈ P(Rn)
under which Lν = (Lνt )t∈[0,T ] belongs to S1,q,T .
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Propagation of Chaos McKean-Vlasov Equation

McKean-Vlasov Equation XI
Question: Under the above Question with the assumption (Ab,σ,ρ),
prove that Lν : S1,q,T → S1,q,T admits a fixed point µ. In other
words, we have

Lµ = µ, under (S1,q,T , dBL
1,q,T ). (70)

Based on the fixed point (70), for f ∈ C∞0 (Rn),

〈µt , f 〉 = 〈Lµt , f 〉 = 〈ρ0, f 〉+

∫ t

0
〈Lµs ,Aµs f 〉ds=〈ρ0, f 〉+

∫ t

0
〈µs ,Aµs f 〉ds.

Then, we have

Existence of McKean-Valsov equation: The above fixed point µ ∈ S1,q,T
given by (70) is a solution of McKean-Valsov equation (67) with µ0 = ρ0.

Question: Establish the propagation of chaos for McKean-Valsov
equation (67) with µ0 = ρ0.
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Replicator-Mutator Equations

Course Outline

1 Treasure Box

2 Stochastic Differential Equations

3 Feynman-Kac Formula

4 Fokker-Planck-Kolmogorov Equations

5 Propagation of Chaos

6 Replicator-Mutator Equations
Mathematical Model of Evolutionary Branching
Mean-Field Approach for Replicator-Mutator Equations
Extended Replicator-Mutator Equations

7 Mean Field Games
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching I

Charles Robert Darwin (1809-1882): English naturalist whose
scientific theory of evolution by natural selection became the
foundation of modern evolutionary studies.

Figure: Charles Robert Darwin

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 172 / 291



Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching II

In 1859, Darwin published “On the Origin of Species by Means of
Natural Selection". The book immediately became controversial.
http://darwin-online.org.uk/

Figure: Book: “Origin of Species"
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching III

Recently, the 2019 Novel Coronavirus, or 2019-nCoV outbreak in
Wuhan.
The recently emerged 2019-nCoV is not the same as the coronavirus
that causes Middle East Respiratory Syndrome (MERS) or the
coronavirus that causes Severe Acute Respiratory Syndrome (SARS).
However, genetic analyses suggest this virus emerged from a virus
related to SARS.
There are ongoing investigations to learn more. This is a rapidly
evolving situation.
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Mathematical Model of Evolutionary Branching IV

Figure: Replication and Mutation of 2019-nCoV.
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching V

Figure: Coronavirus and its replication

We next introduce a mathematical model for describing a molecular
evolution.
Consider first two species (e.g. two types of viruses) {1, 2}:
For i = 1, 2, let X i

t ≥ 0 be the population size of the species i at time
t ≥ 0.
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching VI

Let ri > 0 be the fitness or replicating rate of the i-th species, i.e.,
every 1

ri
generations replicates once.

Then, we have, for i = 1, 2,

dX i
t

dt = riX i
t , t ≥ 0. (71)

Assume that the scale of the population is finite and conservative.
Make a normalization s.t. X 1

t + X 2
t = 1.

We have the following system of equations as follows: for i = 1, 2,

dX i
t

dt = X i
t (ri − g(Xt , r)), t ≥ 0. (72)
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching VII

The term g(x , r) is called

Average Fitness Function: for (x1, x2) ∈ S2 and r = (r1, r2) ∈ R2
+,

g(x , r) := r1x1 + r2x2.

Here S2 is a simplex, i.e., S2 := {(x1, x2) ∈ R2
+; x1 + x2 = 1}.

Taking the mutation into Replicator Equation (72).

Let qij be the probability of the type i mutating to the type j .

Then, we have, for i = 1, 2,

dX i
t

dt = r1X 1
t q1i︸ ︷︷ ︸

no mutation

+ r2X 2
t q2i︸ ︷︷ ︸

2 mut. to 1

−X i
tg(Xt , r) (73)
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching VIII

Extending it to the general N types of species:

Replicator-Mutator (RM) Equation: For i = 1, . . . ,N, and t ≥ 0,

dX i
t

dt =
N∑

j=1
rjX j

tqji − X i
tg(Xt , r). (74)

Initial Behavior:
∑N

i=1 X i
0 = 1.

Average Fitness Function: g(x , r) =
∑N

i=1 rixi for (x , r) ∈ SN × RN
+.

Mutation Matrix: Q = (qij).

Question: Solve RM equation (74). Make a transform
Y g ,i

t := X i
t exp(

∫ t
0 g(Xs , r)ds). Then dY g ,i

t =
∑N

j=1 rjY
g ,j
t qjidt, i.e.,

dY g
t = (rI)N×NQY g

t dt.
Question: How to estimate ri and qij using RM equation (74)?
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Mathematical Model of Evolutionary Branching IX

Figure: Summary of Replicator-Mutator Equations
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Replicator-Mutator Equations Mean-Field Approach for Replicator-Mutator Equations

Mean-Field Approach for RM Equation I

We next introduce a Mean-Field approach for modifying RM equation
in the study of the evolution of RNA virus populations in the
following paper on PRL.

Figure: Paper on PRL: A Mean-Field Approach for RM Dynamics
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Replicator-Mutator Equations Mean-Field Approach for Replicator-Mutator Equations

Mean-Field Approach for RM Equation II

An important observation: every sequence of RNA viruses can be
characterized by its replication rate r ∈ R. There may be different
sequence which exhibit similar replication rates.

Then, we can treat the all sequences which exhibits the similar
replication rates as a population:

In other words, different r corresponds to different population.
For any t ≥ 0, let r → u(t, r) is a probability density function on R,
i.e.,

∫
R u(t, r)dr = 1.
The solution X i

t of RM equation (74) looks like a discrete version of
u(t, r):

N∑
i=1

X i
t = 1 ≈≈≈

∑
i

∫ ri+1

ri

u(t, r)dr = 1.
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Mean-Field Approach for RM Equation III

Without mutations, the discrete version (71) gives that, the
replication dynamics is given by

∂tu(t, r) = ru(t, r).

However, the solution r → u(t, r) of the above equation is not a
probability density function:

A normalization should be made in the above equation as in the
discrete version (72).
This yields that

∂tu(t, r) =

(
r −

∫
R
ru(t, r)dr

)
u(t, r). (75)
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Replicator-Mutator Equations Mean-Field Approach for Replicator-Mutator Equations

Mean-Field Approach for RM Equation IV

Consider a simple mutation without the underlying genomic transition
rate. Then Mean-Field version of RM equation is given by

RM Equation in Mean-Field Form: For the fitness space given by R, for
(t, r) ∈ [0,T ]× R,

∂tu(t, r) =
σ2

2 ∆ru(t, r)︸ ︷︷ ︸
mutations

+

(
r −

∫
R
ru(t, r)dr

)
u(t, r)︸ ︷︷ ︸

replication

, (76)

u(0, r) = u0(r), r ∈ R, (77)

where u0(r) ≥ 0 and
∫
R u0(r)dr = 1.

The solution of RM equation (76) and (77) admits a unique smooth
solution which is studied by
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Mean-Field Approach for RM Equation V

Alfaro, M., and R. Carles (2014): Explicit solutions for replicator-
mutator equations: extinction versus acceleration. SIAM J. Appl.
Math. 74, 1919-1934.
Question: Without referring to the paper by Alfaro and Carles (2014),
establish the closed-form solution u(t, r) of RM Equation (76) and
(77) in Mean-Field form.
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations I

Recall that D ⊆ Rn is domain, which is not necessarily bounded.
Consider the following extended RM equation with fitness space D:

∂tu(t, r) = A∗u(t, r)︸ ︷︷ ︸
mutations

+

(
g(r)−

∫
D
g(y)u(t, y)dy

)
u(t, r)︸ ︷︷ ︸

replication with fitness function g

, (78)

u(0, r) = u0(r), r ∈ D,

where u0(r) ≥ 0 for r ∈ D and
∫

D u0(r)dr = 1.
Here, A∗ is the adjoint operator of the operator A given by: for
f ∈ C2(D),

Af (x) = b(x)>∇x f (x) +
1
2tr[σσ

>(x)∇2
x f (x)], x ∈ D.
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations II
Consider the Itô SDE given by: for (t, x) ∈ [0,T ]× D,

X t,x
s = x +

∫ s

t
b(X t,x

v )dv +

∫ s

t
σ(X t,x

v )dWv , s ∈ [t,T ].

We assume (Ab,σ) and (AX ) hold. Then, X t,x
s ∈ D for all s ∈ [t,T ],

P-a.s.

Consider the weak solution of the extended RM equation (78), which is
defined as: for all f ∈ C∞0 (Rn),

〈u(t), f 〉 = 〈u0, f 〉+

∫ t

0
〈u(s), (A+ g)f 〉ds

−
∫ t

0
〈u(s), g〉〈u(s), f 〉ds, (79)

where the integral 〈u(t), f 〉 :=
∫

D u(t, r)f (r)dr .
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Extended RM Equations III

Relating the weak form (79) of the extended RM equation to the
following FPK equation: for f ∈ C∞0 (D),

〈µt , f 〉 = 〈ρ0, f 〉+

∫ t

0
〈µs , (A+ g)f 〉ds −

∫ t

0
〈µs , f 〉〈µs , g〉ds, (80)

where the initial datum ρ0 ∈ P(D).
Moreover, let the initial datum ρ0 admit a density function given by
u0(r) for r ∈ D, i.e., ρ0(dr) = u0(r)dr .
Then, for t ∈ [0,T ], the solution µt(dr) = u(t, r)dr , where u(t, x) for
(t, x) ∈ [0,T ]× D solves the extended weak form of RM
equation (79).
We next discuss the well-posedness of FPK equation (80).
Question: Establish a solution of FPK equation (80).
Hints: Using the Itô diffusion process X t,x .
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations IV

Question: How to establish the propagation of chaos on FPK
equation (80)?
Hints: First, you should construct a particle system X i = (X i

t )t∈[0,T ]

related to FPK equation (80).
We need to impose the assumption on the fitness function g :

(Agl) (i) g : D → R is continuous and bounded from above; (ii) there exists
a polynomial Qg : R+ =→ R+ such that

|g(x)− g(y)| ≤ Qg (|x |+ |y |)|x − y |, ∀ x , y ∈ D.

(AX0) For q ≥ 2, the sequence of initial states of particles (X i
0)i≥1 is i.i.d.

according to ρ0 ∈ P(deg(Qg )+1)q(D).
(Ab,σ) i.e., (Alip)

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 189 / 291



Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations V

For the particle system, we let the dynamics of the state process of
i-th particle be

dX i
t = b(X i

t )dt + σ(X i
t )dW i

t , X i
0 ∈ D.

We then introduce the sequence of P(D)-valued process

µN
t =

1
N
∑N

i=1 δX i
t
exp

(∫ t
0 g(X i

s )ds
)

1
N
∑N

i=1 exp
(∫ t

0 g(X i
s )ds

)
m (81)

µN
t =

1
N

N∑
i=1

δX i
t
exp

(∫ t

0
(g(X i

s )− 〈µN
s , g〉)ds

)
.

Note that µN and µ are sub-probability measure.
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations VI

Let Ps(D) be the set of sub-probability measures on BD, i.e., for any
µ ∈ Ps(D), µ is a finite measure on BD such that µ(D) ≤ 1.
We next introduce the (Alexandroff) one-point compactification.
Add one point which is outside of D to D called “?” and define
D? := D ∪ {?}.
Let D be topologized by a topology T , and we then can define a
topology T ? for D? as follows:
(i) each open subset of D is also in T ?, i.e., T ⊂ T ?;
(ii) for each compact set C ⊂ D, define an element UC ∈ T ? by

UC := (D \ C) ∪ {?}. Let us define a bijection ι : Ps(D)→ P(D?) as:

(ιµ)(A) := µ(A ∩ D) + (1− µ(D))δ?(A),

where A ∈ B(D?) and µ ∈ Ps(D).
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations VII
Then, the integral of µ ∈ Ps(D) w.r.t. a measurable function
f : D? → R is defined as (if it is well-defined):∫

D?
f (x)(ιµ)(dx) =

∫
D
f (x)µ(dx) + f (?)(1− µ(D))

= 〈µ, f 〉+ f (?)(1− µ(D)).

Consider µ = (µt)t∈[0,T ] as an arbitrary P(D)-valued solution of
extended EM equation, and we then define that

µg
t := exp

(∫ t

0
〈µs , g〉ds

)
µt , t ∈ [0,T ]. (82)

This implies that, for all f ∈ D,

〈µg
t , f 〉 = 〈ρ0, f 〉+

∫ t

0
〈µg

s , (A+ g)f 〉ds. (83)

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 192 / 291



Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations VIII

In view of (1.2) and (1.4) in Manita et al. (2015), the following
equivalent representation holds, for all φ ∈ C1,2

b ([0,T ]× D),

〈
µg

t , φ(t, ·)
〉

=
〈
µg
0 , φ(0, ·)

〉
+

∫ t

0
〈µg

s , (∂t +A+ g)φ(s, ·)〉 ds.

We also define that

µg ,N
t :=

1
N

N∑
i=1

δX i
t
exp

(∫ t

0
g(X i

s )ds
)
.
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations IX

We introduce the following metrics:

d̂q,T (µ, µN) := sup
t∈[0,T ]

dBL(ιµg ,N
t , ιµg

t ) (84)

= sup
t∈[0,T ]

sup
ψ∈R1

E
[∣∣∣∣∫

D?
ψ(x)(ιµg ,N

t − ιµg
t )(dx)

∣∣∣∣q] 1
q
.

Here, R1 is the set of (bounded) Lipschitz continuous functions
ψ : D? → R satisfying ‖ψ‖∞ + ‖ψ‖Lip ≤ 1 (where
‖ψ‖∞ := supx∈D? |ψ(x)| and ‖ψ‖Lip denotes the Lipschitz coefficient
of ψ).
Let | · | be the Euclidean norm. Then, we can define a metric d? on
D? as in Mandelkern (1989):
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations X

fix x0 ∈ D and define l(x) := 1
1+|x−x0| for x ∈ D. For x1, x2 ∈ D, define

d?(x1, x2) := |x1 − x2| ∧ (l(x1) + l(x2)), d?(x , ?) := l(x) for x ∈ D, and
d?(?, ?) = 0. Then, the Lipschitz coefficient of ψ (as a seminorm) is
given by

‖ψ‖Lip = sup
x1 6=x2,x1,x2∈D?

|ψ(x1)− ψ(x2)|
d?(x1, x2)

.

This implies that, for any ψ ∈ R1 and x1, x2 ∈ D,

|ψ(x1)− ψ(x2)| ≤ |x1 − x2| ∧ (l(x1) + l(x2)) ≤ |x1 − x2|. (85)

In other words, ψ ∈ R1 is also a (bounded) Lipschitz continuous
function on D with the Lipschitz coefficient being less than one.
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Extended RM Equations XI

We have that, for all ψ ∈ R1,∫
D?
ψ(x)(ιµg ,N

t − ιµg
t )(dx) =

∫
D
ψ?(x)(µg ,N

t − µg
t )(dx)

=
〈
µg ,N

t − µg
t , ψ?

〉
, (86)

Here ψ?(x) := ψ(x)− ψ(?) for x ∈ D. Then ψ? is a (bounded)
Lipschitz continuous function on D with the Lipschitz coefficient
being less than one.
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Extended RM Equations XII

Lemma

Let assumptions (Aloc), (AX ) and (Agl)-(i) hold. Suppose also that
(AD,σ) there exists a sequence (Dk)k∈N of bounded domains with

Dk ⊂ D such that
⋃∞

k=1Dk = D, each Dk has a
C2-boundary; and for each k ≥ 1, σσ>(x) is uniform elliptic
on Rn for (t, x) ∈ [0,T )× Dk .

Then, the propagator Pg
t,s f satisfies that, for (s, x) ∈ [t,T ]× D,

∂tPg
t,s f (x) + (A+ g)Pg

t,s f (x) = 0, Pg
s,s f (x) = f (x). (87)

Moreover Pg
·,s f ∈ C1,2((0, s]× D) ∩ C([0, s]× D), and there exists a

unique classical solution of the Cauchy problem (87).
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Extended RM Equations XIII

We next show the uniqueness of solutions to extended RM equation
using the propagator Pg

t,s .

Lemma

Let assumptions (AX0), (Ab,σ), (AD,σ) and (Agl) hold. Let
µ = (µt)t∈[0,T ] be a solution of extended RM equation satisfying µ0 = ρ0
and the integrability condition:

sup
t∈[0,T ]

∫
D
|x |deg(Qg )+1µt(dx) < +∞. (88)

Then µ is unique.

Proof. Let µ̂ = (µ̂t)t∈[0,T ] be another solution with µ̂0 = ρ0.
We then define µ̂g

t := exp(
∫ t
0 〈µ̂r , g〉dr)µ̂t for t ∈ [0,T ].
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XIV
We first show that

〈µg
t , ψ〉 = 〈µ̂g

t , ψ〉, t ∈ [0,T ], ψ ∈ R1. (89)

Let s ∈ [0,T ] be an arbitrary (fixed) time and define
h(t, x) := Pg

t,sψ(x) with (t, x) ∈ [0, s]× D and ψ ∈ R1.
However, h is not in C1,2

b ([0, s]× D).
We hence introduce the following cut-off function ξ ∈ C∞0 (Rn) and it
satisfies that ξ(x) ∈ [0, 1] for all x ∈ Rn, and ξ(x) = 1 for |x | ≤ 1;
ξ(x) = 0 for |x | > 2. Moreover, for N ≥ 1, define ξN(x) := ξ(x/N)
for x ∈ Rn.
We have hN(t, x) := ξN(x)h(t, x) is in C1,2

b ([0, s]× D). Therefore,
for all t ∈ [0, s],

〈
µg

t , hN(t, ·)
〉

=
〈
µg
0 , hN(0, ·)

〉
+

∫ t

0

〈
µg

r , (∂t +A+ g)hN(r , ·)
〉
dr .
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XV

In terms of the definition of hN , it holds that

(∂t +A+ g)hN(t, x) = h(t, x)AξN(x) +∇xξN(x)>σσ>∇xh(t, x).

Note that both ∇2
xξN and ∇xξN are bounded (the boundedness is

independent of N) and supported on {x ; N ≤ |x | ≤ 2N} ∩ D.
Moreover, for N ≤ |x | ≤ 2N, there exists a constant C (which is
independent of N) such that

|∇xξN(x)| =
1
N |∇xξ(x/N)| ≤ C

|x | .
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XVI

Let α := deg(Qg ) + 1. Then, there exits a constant C (which is
independent of N) such that∣∣∣∣∫

D

{
h(t, x)AξN(x) +∇xξN(x)>σσ>∇xh(t, x)

}
µg

t (dx)

∣∣∣∣
≤ C

∫
DN
{|x |α + 1}µg

t (dx), (90)

where DN := {x : N ≤ |x | ≤ 2N} ∩ D.
Then, by the assumption (88), i.e., supt∈[0,T ]

∫
D |x |αµt(dx) <∞ and

the assumption (Agl)-(i), there exists a constant C (which is
independent of N) such that

sup
t∈[0,T ]

∫
DN
{|x |α + 1}µg

t (dx) ≤ C sup
t∈[0,T ]

∫
D
{|x |α + 1}µt(dx) < +∞,

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 201 / 291



Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XVII
This gives that the r.h.s. of (90) tends to 0 as N →∞. Hence

lim
N→∞

∫
D

{
h(t, x)AξN(x) +∇xξN(x)>σσ>∇xh(t, x)

}
µg

t (dx) = 0.

This yields that, for all t ∈ [0, s],

〈µg
t , h(t, ·)〉 = lim

N→+∞

〈
µg

t , hN(t, ·)
〉

= lim
N→+∞

〈
µg
0 , hN(0, ·)

〉
=
〈
µg
0 , h(0, ·)

〉
. (91)

Note that 〈µg
s , h(s, ·)〉 = 〈µg

s , ψ〉 and hence (91) gives that

〈µg
s , ψ〉 =

〈
µg
0 , h(0, ·)

〉
=
〈
ρ0, h(0, ·)

〉
. (92)

The same reasoning yields that

〈µ̂g
s , ψ〉 =

〈
µ̂g
0 , h(0, ·)

〉
=
〈
ρ0, h(0, ·)

〉
. (93)
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XVIII

Then, the equality (89) follows from (92) and (93) with the
arbitrariness of s ∈ [0,T ]. By choosing ψ ≡ 1, it follows from (89)
that

exp
(∫ t

0
〈µs , g〉ds

)
= 〈µg

t , 1〉 = 〈µ̂g
t , 1〉 = exp

(∫ t

0
〈µ̂s , g〉ds

)
Therefore

〈µt , ψ〉 = 〈µ̂t , ψ〉, t ∈ [0,T ], ψ ∈ R1.
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XIX

Lemma

Let the conditions of Lemma 28 hold. Then, for any fixed T > 0, it holds
that〈

µg ,N
T − µg

T , f
〉

=
〈
µg ,N
0 − µg

0 ,P
g
0,T f

〉
+

1
N

N∑
i=1

∫ T

0
exp

(∫ s

0
g(X i

r )dr
)
∇xPg

s,T f (X i
s )>σ(X i

s )dW i
s , (94)

where Pg
t,T f for t ∈ [0,T ] is the propagator.

Proof. The key claim is

∂t〈µg
t ,P

g
t,T f 〉 = 0, for all t ∈ [0,T ]. (95)
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XX

In fact, for all (t, y) ∈ [0,T ]× D,

exp
(∫ t

0
g(X y

s )ds
)
Pg

t,T f (X y
t )

= Pg
0,T f (y) +

∫ t

0
exp

(∫ s

0
g(X y

r )dr
)

(∂t +A+ g)Pg
s,T f (X y

s )ds

+

∫ t

0
exp

(∫ s

0
g(X y

r )dr
)
∇xPg

s,T f (X y
s )>σ(X y

s )dWs

= Pg
0,T f (y) +

∫ t

0
exp

(∫ s

0
g(X y

r )dr
)
∇xPg

s,T f (X y
s )>σ(X y

s )dWs .

It holds again that

E
[
exp

(∫ t

0
g(X y

s )ds
)
Pg

t,T f (X y
t )

]
= Pg

0,T f (y).
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Extended RM Equations XXI

Then, we have

〈µt ,Pg
t,T f 〉 =

∫
D E

[
exp

(∫ t
0 g(X y

s )ds
)
Pg

t,T f (X y
t )
]
ρ0(dy)∫

D E
[
exp

(∫ t
0 g(X y

s )ds
)]
ρ0(dy)

.

This yields from (82) that

〈µg
t ,P

g
t,T f 〉 =

∫
D
E
[
exp

(∫ t

0
g(X y

s )ds
)
Pg

t,T f (X y
t )

]
ρ0(dy)

=

∫
D
Pg
0,T f (y)ρ0(dy).
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XXII
Theorem

Let previous assumptions hold. Let µ = (µt)t∈[0,T ] be the P(D)-valued
solution of extended RM equation and µN = (µN

t )t∈[0,T ] be the sequence
of P(D)-valued processes. Then, for any T > 0 and N ≥ 1, there exists a
constant C > 0 which is independent of N such that, for any p ≥ 1,

d̂q,T (µ, µN) ≤ C
(
α(p, q, n,N) +

1
Nq−1

)
, q ≥ 2, (96)

α(p, q, n,N) :=



N−
1
2 + N−

p−q
p , q > n

2 , p 6= 2q;

N−
1
2 ln(1 + N) + N−

p−q
p , q = n

2 , p 6= 2q;

N−
q
n + N−

p−q
p , q < n

2 , p 6=
n

n−q .

(97)
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Mean Field Games

Course Outline
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Mean Field Games Deterministic Control Problem

Deterministic Control Problem I

I recommend you the book “Deterministic and Stochastic Optimal
Control" by Fleming and Rishel (1975):

Figure: Book by Fleming, W.H. and R.W. Rishel.
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Mean Field Games Deterministic Control Problem

Deterministic Control Problem II
Consider a deterministic control problem described as follows:

Time horizon: T ; time variable: t ∈ [0,T ];
State function of a controlled system: X x ,u

t ∈ Rn; control function ut ;
The state dynamics of the controlled system is described as: for
(t, x) ∈ [0,T ]× Rn,

X t,x ,u
s = x +

∫ s

t
b(X t,x ,u

r , ur )dr , s ∈ [t,T ]. (98)

b(x , u) : Rn × U → Rn satisfies a uniform Lipschitz condition in U.
The function us for s ∈ [t,T ] is called a control or strategy, which is
assumed to take values in a compact subset U of Rm.

Set of Admissible Controls UT
t : it is defined as:

UT
t := {us : [t,T ]→ U; s → us is measurable} .
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Mean Field Games Deterministic Control Problem

Deterministic Control Problem III

A deterministic control problem can be described as follows:
Terminal Cost Function g : Rn → R;
Running Cost Function f : Rn × U → R.

The optimization problem is to find an optimal control u∗ ∈ UT
t that

minimizes the following objective functional:

J(t, x ; u∗) = inf
u∈UT

t

J(t, x ; u)

:= inf
u∈UT

t

[
g(X t,x ,u

T ) +

∫ T

t
f (X t,x ,u

s , us)ds
]
. (99)

Define the value function corresponding to the control problem (99):

V (t, x) := inf
u∈UT

t

[
g(X t,x ,u

T ) +

∫ T

t
f (X t,x ,u

s , us)ds
]
. (100)
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Mean Field Games Deterministic Control Problem

Deterministic Control Problem IV

Obviously, the value function satisfies a terminal condition
V (T , x) = g(x).

Dynamic Programming Principle (DPP): For the value function V (t, x)
defined by (110), and t < s ≤ T , it holds that

V (t, x) = inf
u∈UT

t

[
V (s,X t,x ,u

s ) +

∫ s

t
f (X t,x ,u

r , ur )dr
]

(101)

which is documented in Bellman (1957): “Dynamic Programming".

It is saying that if one knows the value function at time s > t, one
may determine the value function at time t by optimizing from time t
to time s and using V (·, s) as the terminal cost.
DPP means that V (t, x) satisfies a semigroup property, but, which is
running backwards.
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Deterministic Control Problem V

Proof of DPP: The proof is based on the following observation on the
admissible control set:

For t < s ≤ T , we have UT
t = U s

t ⊕ UT
s . Here ⊕ means that if

u1 : [t, s]→ U ∈ U s
t and u2 : [s,T ]→ U ∈ UT

s , then ut ⊕ us is defined
as: for r ∈ [t,T ],

ut ⊕ us :=


u1r , r ∈ [t, s];

u2r , r ∈ [s,T ].

Then, u := u1 ⊕ u2 ∈ UT
t if u1 ∈ U s

t and u2 ∈ UT
s .

On the other hand, if u ∈ UT
t , then by restricting the domain of u to

[t, s], we obtain an admissible control in U s
t ;
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Mean Field Games Deterministic Control Problem

Deterministic Control Problem VI

Similarly, by restricting the domain of u to [s,T ], we obtain an
admissible control in UT

s ;
Therefore, we proved that UT

t = U s
t ⊕ UT

s .
By the definition (110) of the value function:

V (t, x) := inf
u∈UT

t

[
g(X t,x ,u

T ) +

∫ T

t
f (X t,x ,u

s , us)ds
]

= inf
u∈UT

t

[
g(X t,x ,u

T ) +

∫ s

t
f (X t,x ,u

r , ur )dr +

∫ T

s
f (X t,x ,u

r , ur )dr
]

= inf
u=u1⊕u2; u1∈U s

t , u2∈UT
s[

g(X t,x ,u
T ) +

∫ s

t
f (X t,x ,u

r , ur )dr +

∫ T

s
f (X t,x ,u

r , ur )dr
]
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Deterministic Control Problem VII

Meanwhile, we decompose the state process X t,x ,u into the ones in
the time interval [t, s] and [s,T ], i.e., X = X 1 ⊕ X 2:

dX 1,u1

r = b(X 1,u1

r , u1r )dr , r ∈ (t, s]; X 1,u1

t = x ;
dX 2,u2

r = b(X 2,u2

r , u2r )dr , r ∈ (s,T ]; X 2,u2

s = X 1,u1

s = X t,x ,u
s ;

Therefore

V (t, x) = inf
u1∈U s

t
inf

u=u1⊕u2; u2∈UT
s , X2,u2

s =X1,u1
s[

g(X 2,u2

T ) +

∫ s

t
f (X 1,u1

r , u1r )dr +

∫ T

s
f (X 2,u2

r , u2r )dr
]
.
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Deterministic Control Problem VIII

Note that X 1,u1 depends only on x and u1, not on X 2,u2 or u2. Since
the first integral depends only on X 1,u1 and u1, this may be
rearranged as:

V (t, x) = inf
u1∈U s

t

{∫ s

t
f (X 1,u1

r , u1r )dr

+ inf
u2∈UT

s , X2,u2
s =X1,u1

s

[
g(X 2,u2

T ) +

∫ T

s
f (X 2,u2

r , u2r )dr
]}

= inf
u1∈U s

t

[∫ s

t
f (X 1,u1

r , u1r )dr + V (X 1,u1
s , s)

]
= inf

u∈UT
t

[∫ s

t
f (X t,x ,u

r , ur )dr + V (X t,x ,u
s , s)

]
.
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Deterministic Control Problem IX

If the value function V (t, x) is C1,1, then we have the following

Hamilton-Jacobi-Bellman (HJB) equation: The value function satisfies
that

∂tV (t, x) + H(∇xV (t, x), x) = 0, (t, x) ∈ [0,T )× Rn; (102)
V (T , x) = g(x), x ∈ Rn,

where H(p, x) for (p, x) ∈ Rn × Rn is called Hamiltonian, which is defined
as:

H(p, x) := inf
u∈U

[
b(x , u)>p + f (x , u)

]
.
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Deterministic Control Problem X
Proof. Using DPP, for a sufficient small h > 0,

V (t, x) = inf
u∈U t+h

t

[
V (t + h,X t,x ,u

t+h ) +

∫ t+h

t
f (X t,x ,u

r , ur )dr
]
.

However, it holds that

V (t + h,X t,x ,u
t+h ) = V (t, x) +

∫ t+h

t
b(X t,x ,u

r , ur )>∇xV (r ,X t,x ,u
r )dr .

When T →∞, the finite control problem becomes an infinite horizon
control problem, which is formulated as:

J(x ; u∗) = inf
u∈U∞t

J(x ; u)

:= inf
u∈U∞t

[∫ ∞
t

e−λs f (X t,x ,u
s , us)ds

]
. (103)
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Deterministic Control Problem XI

Then, we have that

Value Function: For x ∈ Rn,

V (x) := inf
u∈U∞0

[∫ ∞
0

e−λs f (X 0,x ,u
s , us)ds

]
. (104)

DPP: For t < s, it holds that

V (x) = inf
u∈U∞0

[
e−λsV (X 0,x ,u

s ) +

∫ s

0
e−λr f (X 0,x ,u

r , ur )dr
]

(105)

HJB Equation: For x ∈ Rn,

H(∇xV (x), x)− λV (x) = 0 (106)
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Mean Field Games Deterministic Control Problem

Deterministic Control Problem XII

We next illustrate the HJB equation approach in terms of calculus of
variations rather than optimal control:

Let L(q, x) be the Lagrangian, which is a sufficiently smooth function in
q, x ∈ Rn. Fix two points x , y ∈ Rn, and consider the class of admissible
trajectories connecting these points: for t > 0,

Ux ,y
t :=

{
φ ∈ C1([0, t];Rn); φ(0) = x , φ(t) = y

}
.

The basic problem of the calculus of variations is to find the optimal curve
φ∗ ∈ Ux ,y

t s.t.

J(φ∗) = inf
φ∈Ux,y

t

J(φ) := inf
φ∈Ux,y

t

∫ t

0
L(φ̇(s), φ(s))ds
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Deterministic Control Problem XIII

Now assume that φ∗ exists and we want to see what is the property
satisfied by φ∗.

Euler-Lagrange Equation: The optimal curve φ∗ ∈ Ux ,y
t satisfies that, for

r ∈ [0, t],

d
dr [∇qL(φ̇∗(r), φ∗(r))] = ∇xL(φ̇∗(r), φ∗(r)). (107)

Proof. Let ψ ∈ C1([0, t];Rn) with ψ(0) = ψ(t) = 0, i.e., ψ ∈ U0,0t .
Define φs(r) := φ∗(r) + sψ(r) for r ∈ [0, t] and s ∈ R. Hence
φs ∈ Ux ,y

t .
Define also that Φ(s) := J(φs). We next compute Φ′(s) for s ∈ R:
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Mean Field Games Deterministic Control Problem

Deterministic Control Problem XIV

Recall that

Φ(s) =

∫ t

0
L(φ̇∗(r) + sψ̇(r), φ∗(r) + sψ(r))dr .

Therefore, by setting rs := φ̇∗(r) + sψ̇(r),

Φ′(s) =

∫ t

0
[∇qL(rs)>ψ̇(r) +∇xL(rs)>ψ(r)]dr .

Using integration by parts, we have∫ t

0
∇qL(rs)>ψ̇(r)dr = ∇qL(rs)>ψ(r)

∣∣∣r=t

r=0
−
∫ t

0

d
dr [∇qL(rs)]>ψ(r)dr

= −
∫ t

0

d
dr [∇qL(r)]>ψ(r)dr .
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Deterministic Control Problem XV

Thus, it holds that

Φ′(s) =

∫ t

0

{
∇xL(rs)> − d

dr [∇qL(rs)]>
}
ψ(r)dr .

Since φ∗ ∈ Ux ,y
t is a minimizer of J(φ) over φ ∈ Ux ,y

t , we have

Φ′(0) = 0.

This yields Euler-Lagrange equation (107).
We next connect the Euler-Lagrange equation to the so-called
Hamilton equation.

Let p ∈ Rn and x ∈ Rn be given. Assume that the equation ∇qL(q, x) = p
in the unknown q has a unique smooth solution q(p, x) ∈ Rn.
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Deterministic Control Problem XVI

Define the Hamiltonian as H(p, x) := pq(p, x)− L(q(p, x), x) for
(p, x) ∈ Rn × Rn.
Let φ∗(r) for r ∈ [0, t] be the solution of the Euler-Lagrange equation
(107).
Question: Prove that φ∗ satisfies the Hamilton equation: for
r ∈ [0, t], 

φ̇∗(r) = ∇pH(p(r), φ∗(r)),

ṗ(r) = −∇xH(p(r), φ∗(r)).

(108)
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Mean Field Games Stochastic Control Problem

Stochastic Control Problem I

Consider the following controlled diffusion process described as: for
(t, x) ∈ [0,T ]× Rn,

X t,x
s = x +

∫ s

t
b(X t,x

r , ur )dr +

∫ s

t
σ(X t,x

r , ur )dWr , s ∈ [t,T ].

(109)

Here, b(x , u) : Rn × U → Rn and σ(x , u) : Rn × U → Rn×m.
The control (ut)t∈[0,T ] is a progressively measurable process, valued
in U ⊂ Rm.
We impose the assumption on the coefficients (b, σ):

(Ac) b, σ satisfy a uniform Lipschitz condition in U: for any x , y ∈ Rn and
u ∈ U,

|b(x , u)− b(y , u)|+ |σ(x , u)− σ(y , u)| ≤ L|x − y |,

for some K > 0.
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Stochastic Control Problem II

Denote by U the set of control processes (ut)t∈[0,T ] such that

E
[∫ T

0
(|b(0, ut)|2 + |σ(0, ut)|2)dt

]
<∞.

We next introduce the objective functional:

Terminal Payoff Function: g : Rn → R is measurable and satisfies a
quadratic growth condition:

(Ag) i.e., |g(x)| ≤ K (1 + |x |2) for all x ∈ Rn.
Running Payoff Function: f : Rn × U → R is measurable and satisfies a
quadratic growth condition in x :

(Af ) i.e., |f (x , u)| ≤ K (1 + |x |2) + l(u) for all (x , u) ∈ Rn × U,
where l : U → R+ is a positive function.
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Stochastic Control Problem III
We next introduce the admissible control sets:

Admissible Control Set: For (t, x) ∈ [0,T ]×Rn, denote by Ut,x the subset
of controls (ut)t∈[0,T ] ∈ U such that

E
[∫ T

t
|f (s,X t,x

s , us)|ds
]
<∞.

Question: Under the assumption (Af ), prove Ut,x 6= ∅.

Value Function: For (t, x) ∈ [0,T ]× Rn,

V (t, x) := sup
u∈Ut,x

J(t, x , u)

:= sup
u∈Ut,x

E
[
g(X t,x

T ) +

∫ T

t
f (s,X t,x

s , us)ds
]
. (110)
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Stochastic Control Problem IV

For any (t, x) ∈ [0,T )× Rn, if there exists u∗ ∈ Ut,x such that
V (t, x) = J(t, x , u∗), then u∗ is called an optimal control.

Markovian Controls: For any u ∈ Ut,x , if there exists a measurable
function u : [0,T ]× Rn → U such that us = u(s,X t,x

s ) for s ∈ [t,T ].

Optimal Markovian Control: the optimal control u∗s = u∗(s,X t,x ,∗
s ).

Here X t,x ,∗ satisfies SDE (99) with u replaced by u∗.
We next introduce the dynamic programming principle (DPP), which
is a fundamental principle in the theory of stochastic control.
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Stochastic Control Problem V

To this purpose, let τ ∈ Tt,T be the set of stopping times taking
values on [t,T ].

Theorem (Stochastic Version of DPP)

For (t, x) ∈ [0,T ]× Rn, it holds that

V (t, x) = sup
u∈Ut,x

sup
τ∈Tt,T

E
[
V (τ,X t,x

τ ) +

∫ τ

t
f (s,X t,x

s , us)ds
]
,

V (t, x) = sup
u∈Ut,x

inf
τ∈Tt,T

E
[
V (τ,X t,x

τ ) +

∫ τ

t
f (s,X t,x

s , us)ds
]
.

Proof. For any u ∈ Ut,x , i.e., u is an admissible control, using the
pathwise uniqueness of SDE (99),

X t,x
s = X τ,X t,x

τ
s , s ≥ τ ∈ Tt,T . (111)
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Stochastic Control Problem VI
Then, for any τ ∈ Tt,T , using (111),

J(t, x , u) = E
[
g(X t,x

T ) +

∫ T

τ
f (s,X t,x

s , us)ds +

∫ τ

t
f (s,X t,x

s , us)ds
]

= E
{
E
[
g(X t,x

T ) +

∫ T

τ
f (s,X t,x

s , us)ds +

∫ τ

t
f (s,X t,x

s , us)ds
∣∣∣Fτ

]}

= E
{
E
[
g(X t,x

T ) +

∫ T

τ
f (s,X t,x

s , us)ds
∣∣∣Fτ

]
+

∫ τ

t
f (s,X t,x

s , us)ds
}

= E
[
J(τ,X t,x

τ , u) +

∫ τ

t
f (s,X t,x

s , us)ds
]
.

Since J(t, x , u) ≤ V (t, x), it holds that

J(t, x , u) ≤ E
[
V (τ,X t,x

τ ) +

∫ τ

t
f (s,X t,x

s , us)ds
]
, ∀ τ ∈ Tt,T .
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Stochastic Control Problem VII

Therefore, for all u ∈ Ut,x ,

J(t, x , u) ≤ inf
τ∈Tt,T

E
[
V (τ,X t,x

τ ) +

∫ τ

t
f (s,X t,x

s , us)ds
]

≤ sup
u∈Ut,x

inf
τ∈Tt,T

E
[
V (τ,X t,x

τ ) +

∫ τ

t
f (s,X t,x

s , us)ds
]
.

This yields that

V (t, x) ≤ sup
u∈Ut,x

inf
τ∈Tt,T

E
[
V (τ,X t,x

τ ) +

∫ τ

t
f (s,X t,x

s , us)ds
]
.

On the other hand, fix some arbitrary admissible control u ∈ Ut,x and
τ ∈ Tt,T .
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Stochastic Control Problem VIII

By the definition of the value function, for any ε > 0 and ω ∈ Ω-a.s.,
there exists uε(ω) ∈ Uτ(ω),X t,x

τ(ω)
(ω), which is an ε-optimal control for

V (τ(ω),X t,x
τ(ω)(ω)), i.e.,

V (τ(ω),X t,x
τ(ω)(ω))− ε ≤ J(τ(ω),X t,x

τ(ω)(ω), uε(ω)). (112)

Let us define that

ũt(ω) :=


ut(ω), t ∈ [0, τ(ω)];

uεt (ω), t ∈ [τ(ω),T ].
(113)

Warning: Measurability issue on ũ ∈ Ut,x : but it can be shown by the
measurable selection theorem.
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Stochastic Control Problem IX

Then, by (112), we have

V (t, x) ≥ J(t, x , ũ) = E
[
J(τ,X t,x

τ , uε) +

∫ τ

t
f (s,X t,x

s , us)ds
]

≥ E
[
V (τ,X t,x

τ ) +

∫ τ

t
f (s,X t,x

s , us)ds
]
− ε.

By the arbitrariness of u ∈ Ut,x , τ ∈ Tt,T and ε > 0, we get

V (t, x) ≥ sup
u∈Ut,x

sup
τ∈Tt,T

E
[
V (τ,X t,x

τ ) +

∫ τ

t
f (s,X t,x

s , us)ds
]
.

Thus, we complete the proof of DPP.
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Stochastic Control Problem X

DPP can yield the Hamilton-Jacobi-Bellman (HJB) equation:

HJB Equation: If the value function V ∈ C1,2, then V satisfies the HJB
equation given by: for (t, x) ∈ [0,T )× Rn,

∂tV (t, x) + H(x ,∇xV (t, x),∇2
xV (t, x)) = 0, (114)
V (T , x) = g(x), x ∈ Rn,

where the Hamiltonian H(x , p,M) for (x , p,M) ∈ Rn × Rn × Rn×n is
defined as:

H(x , p,M) := sup
u∈U

[
b(x , u)>p +

1
2tr[σσ

>(x , u)M] + f (x , u)

]
.
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Stochastic Control Problem XI
Theorem VI.6.2 in Fleming and Rishel (1975), page 169 proves the
well-posedness of HJB equation (114) when σ(x , u) = σ(x), i.e., the
volatility of the controlled process is independent of the control u:
Let Q = (0,T )× Rn;

(a) The policy space U ⊂ Rm is compact.
(b) b(x , u) = b̃(x) + σ(x)θ(x , u).
(c) b̃, σ ∈ C2(Rn); σ, σ−1 and σx , b̃x are bounded in Rn;

θ ∈ C1(Rn × U), θ, θx are bounded.
(d) f ∈ C1(Rn × U), f , fx satisfy the polynomial growth condition.
(e) g ∈ C2(Rn), g , gx satisfy the polynomial growth condition.

Theorem (Well-posedness of Smooth Solution of HJB Equation)

Under assumptions (a)-(e), the HJB equation (114) admits a classical
solution with polynomial growth.
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Backward Stochastic Differential Equations I

We first introduce the framework of backward stochastic differential
equation (BSDE).
For this purpose, define the following space for stochastic processes:

Space Sp
T : the set of R-valued progressively measurable processes

Y = (Yt)t∈[0,T ] such that

E
[

sup
t∈[0,T ]

|Yt |p
]
<∞, p ≥ 1.
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Backward Stochastic Differential Equations II

Space Hp
m,T : the set of Rm-valued progressively measurable processes

Z = (Zt)t∈[0,T ] such that

E
[∫ T

0
|Zt |pdt

]
<∞, p ≥ 1.

Given a real-valued r.v. ξ and a random mapping
f : Ω× [0,T ]× R× Rm → R, assume that

(ABSDE0) ξ ∈ L2(Ω;R);
(ABSDEf ) Write f (t, y , z) = f (·, t, y , z), it is progressively

measurable for all (y , z) ∈ R× Rm; f (t, 0, 0) ∈ H2
1,T ;

f (t, ·, ·) is Lipschitz in (y , z) uniformly w.r.t. (t, ω), i.e.
there exists a constant K s.t., dt ⊗ P-a.s.,

|f (t, y1, z1)− f (t, y2, z2)| ≤ K [|y1 − y2|+ |z1 − z2|]
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Backward Stochastic Differential Equations III

The standard BSDE is given by

One-dimensional BSDE: For a terminal horizon T > 0,

dYt = −f (t,Yt ,Zt)dt + Z>t dWt , (115)
YT = ξ.

Theorem (Well-posedness of BSDE)

Given (ξ, f ) satisfying (ABSDE0) and (ABSDEf ), then BSDE (115) admits
a unique solution (Y ,Z ) ∈ S2

T ×H2
m,T .

Proof. Use a fixed point argument.
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Backward Stochastic Differential Equations IV
Let (U,V ) ∈ X := S2

T ×H2
m,T . Then, we define a square-integrable

martingale by assumptions (ABSDE0) and (ABSDEf ) as:

Mt := E
[
ξ +

∫ T

0
f (s,Us ,Vs)ds

∣∣∣Ft

]

The martingale representation theorem yields that, there exists
Z ∈ H2

m,T such that

Mt = M0 +

∫ t

0
Z>s Ws , t ∈ [0,T ].

Given Z ∈ H2
m,T above, we then define

Yt := E
[
ξ +

∫ T

t
f (s,Us ,Vs)ds

∣∣∣Ft

]
= Mt −

∫ t

0
f (s,Us ,Vs)ds.
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Backward Stochastic Differential Equations V

Obviously, we have YT = ξ. Then, we can summarize that

Yt = ξ +

∫ t

0
Z>s Ws −

∫ t

0
f (s,Us ,Vs)ds. (116)

Accordingly, we define a mapping Φ on X as follows:

(Y ,Z ) = Φ(U,V ).

By BDG inequality, we obtain (Y ,Z ) ∈ X , i.e., Φ : X → X .
Therefore, (Y ,Z ) is a solution of BSDE (115) if and only if (Y ,Z ) is
a fixed point of Φ.
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Backward Stochastic Differential Equations VI

We next prove that Φ : X → X is a contraction mapping on Banach
space X with norm given by

‖(Y ,Z )‖λ :=

{
E
[∫ T

0
eλs(|Ys |2 + |Zs |2)ds

]} 1
2

by taking a suitable parameter λ ∈ R.
Question: Prove Φ : X → X is a contraction mapping.
By (116), ξ = ξ +

∫ T
0 Z>s dWs −

∫ T
0 f (s,Ys ,Zs)ds. Then, making

difference between it and (116) to get that (Y ,Z ) is the solution of
BSDE.
Thus, we complete the proof of the theorem.
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Backward Stochastic Differential Equations VII

We next introduce comparison principles of solutions of BSDE (115).

Theorem (Comparison Theorem)

Let (ξi , f i ) satisfies assumptions (ABSDE0) and (ABSDEf ) for i = 1, 2. Let
(Y i ,Z i ) be the solution of BSDE (115) with (ξi , f i ). Assume that

(i) ξ1 ≤ ξ2, a.s.;
(ii) f 1(t,Y 1

t ,Z 1
t ) ≤ f 2(t,Y 1

t ,Z 1
t ), dt ⊗ dP-a.s.

(iii) f 2(t,Y 1
t ,Z 1

t ) ∈ H2
m,T .

Then, Y 1
t ≤ Y 2

t , for all t ∈ [0,T ], P-a.s.

Question: Prove Theorem 34.
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Backward Stochastic Differential Equations VIII
Question: Consider the following linear BSDE:

dYt = −(AtYt + Z>t Bt + Ct)dt + Z>t dWt , (117)
YT = ξ.

where A = (At)t∈[0,T ], B = (Bt)t∈[0,T ] are bounded progressively
measurable processes and C = (Ct)t∈[0,T ] ∈ H2

1,T . Then

Yt = X−1t E
[
XT ξ +

∫ T

t
XsCsds

∣∣∣Ft

]
,

where the process X = (Xt)t∈[0,T ] satisfies the following forward
linear SDE:

dXt = Xt(Atdt + B>t dWt), X0 = 1,

i.e., Xt = Et(
∫ ·
0 Asds +

∫ ·
0 B>s dWs).
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Nonlinear Feynamn-Kac Formula I

Consider the following assumptions:
(ANFYf) The deterministic function

f (t, x , y , z) : [0,T ]× Rn × R× Rm is continuous, it
satisfies a linear growth condition in (x , y , z) and a
Lipschitz condition in (y , z) uniformly w.r.t. (t, x);

(ANFYphi) The function φ : Rn → R is continuous and it satisfies a
linear growth condition.

Consider the semilinear Cauchy problem: for (t, x) ∈ [0,T )× Rn,

∂tu +Au + f (t, x , u, σ>∇xu) = 0, (118)
u(T , x) = φ(x), x ∈ Rn.

We next introduce the following forward-backward SDE as follows:

dYs = −f (s,Xs ,Ys ,Zs)ds + Z>s dWs , s ∈ [t,T ], YT = φ(XT ).
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Nonlinear Feynamn-Kac Formula II

The forward SDE is given by

dXt = b(Xt)dt + σ(Xt)dWt , s ∈ [t,T ],

where the generator of X is A.
For (t, x) ∈ [0,T ]× Rn, consider

X t,x
s = x +

∫ s

t
b(X t,x

r )dr +

∫ s

t
σ(X t,x

r )dWr , s ∈ [t,T ].

Let (Y t,x
s ,Z t,x

s )s∈[t,T ] be the above BSDE with Xs = X t,x
s for

s ∈ [t,T ].
Then, u(t, x) := Y t,x

t is a deterministic function on [0,T ]× Rn.
Note that u(T , x) = Y T ,x

T = φ(XT ,x
T ) = φ(x) for x ∈ Rn.
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Nonlinear Feynamn-Kac Formula III

Using Markov property of X and the uniqueness of the solution to
BSDE, we have that

Yt = u(t,Xt), t ∈ [0,T ]. (119)

Then, the function u(t, x) in (119) is in fact related to the solution of
the semilinear Cauchy problem (118):

Viscosity Solution of Semilinear Cauchy problem (118): u(t, x) := Y t,x
t is

continuous on [0,T ]× Rn and it is a viscosity solution.

Now, assume that u(t, x) is a classical solution of the semilinear
Cauchy problem (118), and it also satisfies a linear growth condition.
Moreover, |∇xu(t, x)| ≤ K (1 + |x |p) for K , p > 0.
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Nonlinear Feynamn-Kac Formula IV

Using Itô formula to u(t,Xt), we have

Let t ∈ [0,T ] and define

Yt = u(t,Xt), Zt = σ(Xt)>∇xu(t,Xt) (120)

is the solution of BSDE.

Question: Prove (120).
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Stochastic Maximum Principle I

Recall the controlled diffusion process given by: X0 = x ∈ Rn, and

dXt = b(Xt , ut)dt + σ(Xt , ut)dWt , t ∈ [0,T ].

One wants to maximize the following objective functional given by

Objective Functional: For x ∈ Rn and u ∈ U ,

J(u) := E
[
g(XT ) +

∫ T

0
f (t,Xt , ut)dt

]
.

We impose the following assumptions:

(ASMPfg) The terminal payoff function g : Rn → R is a concave C1-
function; The running payoff function f : [0,T ]× Rn × U → R is
continuous in (t, x) for all u ∈ U; f , g satisfy a quadratic growth in x .
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Stochastic Maximum Principle II
We next introduce the so-called generalized Hamiltonian:

Generalized Hamiltonian: Π : [0,T ]×Rn ×Rn ×Rn×m ×U → R, which is
defined as:

Π(t, x , y , z , u) := b(x , u)>y + tr[σ(x , u)>z ] + f (t, x , u). (121)

Then, the controlled diffusion process can be rewritten as:

dXt = ∇y Π(t,Xt ,Yt ,Zt , ut)dt + σ(Xt , ut)dWt , t ∈ [0,T ].

We further assume that the gradient ∇x Π(t, x , y , z , u) exists.

The Adjoint Equation: it is the following BSDE given by, for u ∈ U ,

dYt = −∇x Π(t,Xt ,Yt ,Zt , ut)dt + ZtdWt , t ∈ [0,T ]; (122)
YT = ∇xg(XT ).
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Stochastic Maximum Principle III

Then, the stochastic maximum principle is given by

Theorem (Stochastic Maximum Principle)

Let u∗ ∈ U and X ∗ be the controlled diffusion process with control u∗.
Assume that there is a solution (Y ∗,Z ∗) to the adjoint equation (122)
such that, for t ∈ [0,T ], P-a.s.,

Π(t,X ∗t ,Y ∗t ,Z ∗t , u∗t ) = sup
u∈U

Π(t,X ∗t ,Y ∗t ,Z ∗t , u),

and (x , u)→ Π(t, x ,Y ∗t ,Z ∗t , u) is a concave function for all t ∈ [0,T ].
Then u∗ is an optimal control, i.e., J(u∗) = supu∈U J(u).

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 250 / 291



Mean Field Games Stochastic Maximum Principle

Stochastic Maximum Principle IV

Proof. For any u ∈ U , we have

J(u∗)− J(u)

= E
[
g(X ∗T )− g(XT ) +

∫ T

0
(f (s,X ∗s , u∗s )− f (s,Xs , us))ds

]
.

It follows from the concavity of g that

E [g(X ∗T )− g(XT )] ≥ E
[
(X ∗T − XT )>∇xg(X ∗T )

]
= E

[
(X ∗T − XT )>Y ∗T

]
.
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Stochastic Maximum Principle V

By Itô formula, we obtain

E
[
(X ∗T − XT )>Y ∗T

]
= E

[∫ T

0
(X ∗s − Xs)>dY ∗s

]

+ E
[∫ T

0
Y ∗,>s d(X ∗s − Xs)

]
+E

[∫ T

0
tr[(σ(X ∗s , u∗s )− σ(Xs , us))>Z ∗s ]ds

]

= −E
[∫ T

0
(X ∗s − Xs)>∇x Π(s,X ∗s ,Y ∗s ,Z ∗s , u∗s )ds

]

+ E
[∫ T

0
(b(X ∗s , u∗s )− b(Xs , us))>Y ∗s ds

]

+ E
[∫ T

0
tr[(σ(X ∗s , u∗s )− σ(Xs , us))>Z ∗s ]ds

]
.
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Stochastic Maximum Principle VI

Using the definition of Π, one has

E
[∫ T

0
(f (s,X ∗s , u∗s )− f (s,Xs , us))ds

]

= E
[∫ T

0
(Π(s,X ∗s ,Y ∗s ,Z ∗s , u∗s )− Π(s,Xs ,Y ∗s ,Z ∗s , us))ds

]

− E
[∫ T

0
(b(X ∗s , u∗s )− b(Xs , us))>Y ∗s ds

]

− E
[∫ T

0
tr[(σ(X ∗s , u∗s )− σ(Xs , us))>Z ∗s ]ds

]
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Stochastic Maximum Principle VII

Combing the above equalities, we have

J(u∗)− J(u) ≥ −E
[∫ T

0
(X ∗s − Xs)>∇x Π(s,X ∗s ,Y ∗s ,Z ∗s , u∗s )ds

]

+ E
[∫ T

0
(Π(s,X ∗s ,Y ∗s ,Z ∗s , u∗s )− Π(s,Xs ,Y ∗s ,Z ∗s , us))ds

]
.

Using the assumption
Π(t,X ∗t ,Y ∗t ,Z ∗t , u∗t ) = supu∈U Π(t,X ∗t ,Y ∗t ,Z ∗t , u), and
(x , u)→ Π(t, x ,Y ∗t ,Z ∗t , u) is a concave function, we thus proves the
theorem.
Thus, we complete the proof of the theorem.
We next establish the relationship between HJB equation and the
stochastic maximum principle.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 254 / 291



Mean Field Games Stochastic Maximum Principle

Stochastic Maximum Principle VIII

First, recall the controlled diffusion process described as (109), i.e.,
for (t, x) ∈ [0,T ]× Rn,

X t,x
s = x +

∫ s

t
b(X t,x

r , ur )dr +

∫ s

t
σ(X t,x

r , ur )dWr , s ∈ [t,T ].

Recall the value function defined by (110), i.e.,

Value Function: For (t, x) ∈ [0,T ]× Rn,

V (t, x) := sup
u∈Ut,x

J(t, x , u)

:= sup
u∈Ut,x

E
[
g(X t,x

T ) +

∫ T

t
f (s,X t,x

s , us)ds
]
.
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Stochastic Maximum Principle IX

Recall the HJB equation given by (114), i.e.,

HJB Equation: If the value function V ∈ C1,2, then V satisfies the HJB
equation given by: for (t, x) ∈ [0,T )× Rn,

∂tV (t, x) + sup
u∈U

H̃(t, x , u,∇xV (t, x),∇2
xV (t, x)) = 0,

V (T , x) = g(x), x ∈ Rn,

where H̃(t, x , u, p,M) for (t, x , u, p,M) ∈ [0,T ]×Rn × U ×Rn ×Rn×n is
defined as:

H̃(t, x , u, p,M) := b(x , u)>p +
1
2tr[σσ

>(x , u)M] + f (t, x , a).
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Stochastic Maximum Principle X
Then, we have the following connection:

Theorem (Connection between HJB Equation and Maximum Principle)

Let HJB equation has a solution V ∈ C1,3([0,T )× Rn) ∩ C([0,T ]× Rn).
Assume that there is an optimal control u∗ ∈ U for the value function
V (t, x) and X ∗ is the controlled diffusion process with u∗. Then

H̃(t,X ∗t , u∗t ,∇xV (t,X ∗t ),∇2
xV (t,X ∗t ))

= sup
u∈U

H̃(t,X ∗t , u,∇xV (t,X ∗t ),∇2
xV (t,X ∗t )),

and the pair (Y ∗t ,Z ∗t ) = (∇xV (t,X ∗t ),∇2
xV (t,X ∗t )σ(X ∗t , u∗t )) is a solution

of the adjoint equation (BSDE) (122).

Question: Prove this theorem and discuss that why here we need
V ∈ C1,3.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 257 / 291



Mean Field Games Definition of MFG

Definition of MFG I

Consider a large system of agents (players) which behave similarly.
The interactions among agents (players) are negligible but each
agent’s actions affect the mean of the population.
Every agent (player) acts according to his/her control problem by
taking into account other agents (players)’ decisions.

Mean field differential game (MFG) studies the existence of a
representative agent (player) such that the large system of agents (players)
similar to this representative agent when the number of agents (players)
goes to infinity.

The seminal work on MFG are:
Academics: Lions and Lasry (2007): Mean field games. Jpn. J. Math.
2, 229-260.
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Definition of MFG II

Figure: Seminal work on MFG
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Definition of MFG III
Industry: Huang, Malhame and Caines (2006): Large population
stochastic dynamic games: closed-loop McKean-Vlasov systems and
the Nash certainty equivalence principle. Commun. Inf. Syst. no. 3,
221-251.

Figure: Seminal work on MFG
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Definition of MFG IV

Two Approaches:

(i): The coupled Hamilton-Jacobi-Bellman with Focker-Planck which
comes from dynamic programming in control theory;
(ii): PDEs and Forward-Backward SDE (FBSDEs) of McKean-Vlasov type
which comes from stochastic analysis.

We next provide an example for illustrating a static MFG:

Meeting Game Example: There are N professors who will attend an
important meeting. This meeting will start at time t0 (which is known).

There N professors start from different locations to attend but are symmetric
in a sense that they share the same characteristics (for instant they take the
same distance to the venue or they go with the same speed, etc).
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Definition of MFG V

But, we have to consider the following factors:
(i) someones are always late, the department chair decided to actually start the

meeting only when the 75% of them gather to the venue.

(ii) Each professor given his/her preferences has a target time ti of arrival, for
i = 1, . . . ,N.

(iii) Because of unpredictable circumstances (weather conditions, traffic etc),
they actually arrive at the venue at time Xi .

Xi = ti + σiξi , σi > 0, ξi i.i.d. ∼ N(0, 1). (123)

(iv) where, we explain that
ti is the desired arrival time which is the control for professor i .
σiξi models unpredictable events.
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Definition of MFG VI

Figure: MFG on meeting

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 263 / 291



Mean Field Games Definition of MFG

Definition of MFG VII
By (i), the actual time T the meeting starts, is a function of the
empirical distribution µN

X of the arrival times X = (X1, ...,XN),

µN
X (dx) :=

1
N

N∑
i=1

δXi (dx), on B(R). (124)

In other words,
T = f (µN

X ) = inf{t ∈ (−∞, t0]; µN
X ((−∞, t]) = 0.75}.

The expected cost of professor i is given by: for control (t1, . . . , tN) ∈ RN
+,

Ji (t1, . . . , ti , . . . , tN)

= E

A(Xi − t0)+︸ ︷︷ ︸
reputation cost

+B(Xi − T )+︸ ︷︷ ︸
overdue cost

+ C(T − Xi )
+︸ ︷︷ ︸

cost of early arrival

 , (125)

where, we note that T depends on the control (t1, . . . , tN).
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Definition of MFG VIII

We next give the game formulation:

Game Formulation:
I: the set of agents (players); |I| = N, the number of players;

Ui : the set of actions (controls) for agent (player) i ; U = U1 × · · · × UN ;

u = (u1, . . . , uN) ∈ U; u−i := (u1, . . . , ui−1, ui+1, . . . , uN);

J: the set of payoff functions J : U → R.

Then, we have the following definitions:

Definition (Nash Equilibrium)

Let Ji ∈ J be the payoff function of player i . An action (control) u∗ ∈ U is
called a Nash equilibrium of the game I if and only if for every player
i = 1, . . . , |I|, Ji (u∗) ≥ Ji (v , u∗−i ) for all v ∈ Ui .
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Definition of MFG IX

We introduce the concept of the best response function:

Definition (Best Response Function (BRF))

For player i = 1, . . . , |I|, a function Bi : U → Ui is said to be a best
response of player i to the actions of the other players if for all u ∈ U,

Bi (u) := {ui ∈ Ui ; Ji (ui , u−i ) ≥ Ji (v , u−i ), ∀ v ∈ Ui} .

The fixed point of B := B1 × · · · × BN : U → U:

Let u∗ ∈ U be the fixed point of B : U → U if and only if u∗ is a Nash
equilibrium of the game I:

u∗ = B(u∗) = B1(u∗)× · · · ×BN(u∗), i.e., Ji (u∗) ≥ Ji (v , u∗−i ) for all v ∈ Ui .

Example: Prisoners’ Dilemma:

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 266 / 291



Mean Field Games Definition of MFG

Definition of MFG X
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Definition of MFG XI

Figure: Game and Nash Equilibrium
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Definition of MFG XII

We next give an example on a game which has no Nash equilibrium:

Matching Pennies: There are |I| = N = 2 players who show each other
simultaneously the face of a coin:

if the faces they show are the same, then player 2 pays 1 dollar to player 1;

if the faces they show are different, then player 1 pays 1 dollar to player 2.

Formulation of this game: U1 = U2 = {Head,Tail}; The payoff of the
game is

Question: Check that this game has no Nash equilibrium.
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Definition of MFG XIII
In order to guarantee the existence of Nash equilibrium, we introduce
the idea of Nash equilibrium in mixed (relaxed) strategies.

Mixed (Relaxed) Strategies: A mixed (relaxed) strategy for player i in a
strategic game is a probability measure µi ∈ P(Ui ) for his/her actions
(control or strategy) given the actions of the other players.

Definition (Nash Equilibrium in Mixed (Relaxed) Strategies)

We call µ∗ ∈ P(U) = P(ΠN
i=1Ui ) a Nash equilibrium in mixed (relaxed)

strategies if Ji (µ
∗) ≥ Ji (µ) for all µ ∈ P(U).

If u∗ ∈ U is a Nash equilibrium, then µ∗ = δu∗ ∈ P(U) is a Nash
equilibrium in degenerate mixed strategies.
Question: Nash Theorem: Prove that “every strategic game with a
finite action (control) set, has a Nash equilibrium in mixed strategies”.
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Definition of MFG XIV
Nash Theorem stresses the importance of the finiteness of the plays.
We next discuss how to deal with the game with the large number N
of players.
As we introduced at the beginning of this part, we expect to get a
representative player for is game as N →∞.

A Representative Agent (Player) of Meeting Game: Glivenko-Cantelli
Lemma yields that, if X1, . . . ,XN , . . . are i.i.d., then there exists a
probability measure µ ∈ P(R) s.t. µN

X ⇒ µ. Moreover, as N →∞,

sup
x∈R

∣∣∣µN
X ((−∞, x ])− µ((−∞, x ])

∣∣∣→ 0, P-a.s.

Consider a simplification: For i = 1, . . . ,N, Xi = X , ti = t,
εi → ε ∼ N(0, 1) and σi → σ > 0. Then

X = t + σε and Ji (t1, . . . , tN)→ J(t, f (µ))
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Definition of MFG XV
We compute the objective functional J(t, f (µ)) of the representative
agent by defining T ∗ = f (µ):

J(t,T ∗) = E
[
A(X − t0)+ + B(X − T ∗)+ + C(T ∗ − X )+]

= AE
[
(t − t0 + σε)+]+ BE [(X − T ∗)1X>T∗ ]

+ CE [(T ∗ − X )1X≤T∗ ]

= AE
[
(t − t0 + σε)+]+ BE [X − T ∗]

+ (B + C)E [(T ∗ − X )1X≤T∗ ]

= A
∫
R

(t − t0 + σx)+ϕ(x)dx + B(t − T ∗)

+ (B + C)

∫ T∗−t
σ

−∞
(T ∗ − t − σx)ϕ(x)dx

Question: Find a minimizer t∗ = t∗(T ∗) of t → J(t,T ∗). Prove that
t∗(·) has a fixed point.
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Interacting Controlled Diffusion Processes I

We here give an abstract model for illustrating the construction of
Nash equilibrium of the mean-field differential game by using two
approaches mentioned in previous sections.
For agent (player) i , the state process with his/her control ui is given
by the following interacting diffusion process with mean field:

dX i
t = α(X t − X i

t )dt + ui
tdt + σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, (126)

The parameters in (126) satisfy that

The Mean Field Term: X t = 1
N
∑N

i=1 X i
t ; the control ui is an R-valued

progressively measurable process (the set of thus control is given by U i);
Brownian Motions: W i , i = 0, 1, . . . ,N are independent (scalar) Brownian
motions; σ > 0, ρ ∈ [−1, 1].
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Interacting Controlled Diffusion Processes II
The objective (cost) functional of agent i is defined as: for
(u1, . . . , uN) ∈ U := U1 × · · · × UN ,

Ji (u1, . . . , uN) := E
[
g(X i

T ,XT ) +

∫ T

0
f (X i

t ,X t , ui
t)dt

]
. (127)

The terminal cost function and running cost function are given by

The Terminal Cost Function: for x = (x1, . . . , xN) ∈ RN and x : 1
N
∑N

i=1,

gi (x) := g(xi , x) :=
C
2 |x − xi |2.

The Running Cost Function: For ui ∈ R,

fi (x , ui ) := f (xi , x , ui ) :=
|ui |2

2 − qui (x − xi ) +
ε

2 |x − xi |2.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 274 / 291



Mean Field Games Mean Field Differential Games

Interacting Controlled Diffusion Processes III

The function fi (x , ui ) is convex in (x , ui ) if q2 ≤ ε.
We next apply the HJB equation approach to find the Nash
equilibrium with finite N:
To this purpose, let Xt = (X 1

t , . . . ,XN
t ) for t ≥ 0, and define the

value function of agent i as: for (t, x) ∈ [0,T ]× RN and
u−i = (u−i

t )t∈[0,T ] being fixed

Vi (t, x) := inf
ui∈U i

E
[
g(X i

T ,XT ) +

∫ T

t
f (X i

t ,X t , ui
t)dt

∣∣∣Xt = x
]
.

(128)
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Interacting Controlled Diffusion Processes IV

Then, the value function Vi (t, x) satisfies the HJB equation:

0 = ∂tVi (t, x) + inf
ui∈R

{ N∑
j=1

[α(x − xj) + uj ]∂xjVi (t, x)

+
σ2

2

N∑
j,k=1

(ρ2 + δjk(1− ρ2))∂2xj ,xkVi (t, x)

+
|ui |2

2 − qui (x − xi ) +
ε

2 |x − xi |2
}
.

The terminal condition Vi (T , x) = C
2 |x − xi |2 for x ∈ RN .

Using the first-order condition w.r.t. ui , it follows that

u∗,i (t, x) = q(x − xi )− ∂xiVi (t, x), i = 1, . . . ,N.
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Interacting Controlled Diffusion Processes V

In terms of the terminal condition Vi (T , x) = C
2 |x − xi |2, we guess

the value function Vi in the following form:

Vi (t, x) =
ηt
2 (x − xi )

2 + µt , t ∈ [0,T ].

Here t → ηt and t → µt are deterministic functions with ηT = C and
µT = 0.
Plugging u∗,i and the expression of Vi (t, x) into the HJB equation,
we obtain

∂tηt = 2(α + q)ηt +

(
1− 1

N2

)
η2t − (ε− q2),

∂tµt = −σ
2

2 (1− ρ2)

(
1− 1

N

)
ηt .
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Interacting Controlled Diffusion Processes VI

The HJB equation approach gives Closed-Loop Equilibria.
Question: Apply Stochastic Maximum Principle to find the Nash
Equilibrium, which is an Open-Loop Equilibria.
To illustrate the application of Stochastic Maximum Principle to find
the Nash Equilibrium, we discuss a Linear-Quadratic (LQ) model
coming from R. Carmona, Jean-Pierre Fouque and Li-Hsien Sun
(2013) below.
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Approximate Nash Equilibria I

The procedure of finding Approximate Nash Equilibrium as N →∞:

Step 1: Fix an (FW0
t )t∈[0,T ]-adapted process (mt)t∈[0,T ] (being thought of

as a candidate for the limit of X t as N →∞);

Step 2: Consider the following control problem of a representative agent
(player) given by:

inf
u∈U

E
[
g(XT ,mT ) +

∫ T

0
f (Xt ,mt , ut)dt

]
,

where dXt = α(mt − Xt)dt + utdt + σ(
√
1− ρ2dWt + ρdW 0

t ), and W i

for i ≥ 1, W 0 and W are independent Brownian motions.
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Approximate Nash Equilibria II

Step 3: Solving the fixed point problem given by

mt = E
[
Xt |FW0

t
]
, t ∈ [0,T ].

Note that in Step 2, m = (mt)t∈[0,T ] is a process. Then, it is
convenient to solve the control problem of the representative agent
using Stochastic Maximum Principle (see Theorem 35):
Therefore, the Hamiltonian is given by: for (t, x , y) ∈ [0,T ]× R× R
and (z , u) ∈ R2 × R,

Π(ω, t, x , y , z , u) := α(mt(ω)− x)y + uy +

[
σ
√
1− ρ2, σρ

]
z

+ f (x ,mt(ω), u).

It is strictly convex in (x , u) under the condition q2 ≤ ε.
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Approximate Nash Equilibria III

Then, FOC gives that, the optimal control u∗ satisfies that

∂Π

∂u = 0⇐=⇒ u∗ = q(mt − x)− y .

The corresponding adjoint forward-backward equations are given by:

dX ∗t = Πy (t,X ∗t ,Y ∗t ,Z ∗t , u∗t )dt + σ(
√
1− ρ2dWt + ρdW 0

t );

dY ∗t = −Πx (t,X ∗t ,Y ∗t ,Z ∗t , u∗t )dt + Z ∗,0t dW 0
t + Z ∗,1t dWt ,

Y ∗T = ∇xg(X ∗T ),

where Z ∗t = (Z ∗,0t ,Z ∗,1t ).
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Approximate Nash Equilibria IV

Therefore

dX ∗t = [(α + q)(mt − X ∗t )− Y ∗t ]dt + σ(
√
1− ρ2dWt + ρdW 0

t );

dY ∗t = [(α + q)Y ∗t + (ε− q2)(mt − X ∗t )]dt + Z ∗,0t dW 0
t + Z ∗,1t dWt ,

Y ∗T = C(X ∗T −mT ).

Hence, for mX
t := E [X ∗t |F

W0
t ] and mY

t := E [Y ∗t |F
W0
t ], we obtain that

mX
t = mX

0 +

∫ t

0
[(α + q)(ms −mX

s )−mY
s ]ds + σρW 0

t ; (129)

mY
t = mY

T −
∫ T

t
[(α + q)mY

s + (ε− q2)(mY
s −mX

s )]ds

+ Z ∗,0t dW 0
t ; (130)

mY
T = C(mX

T −mT ). (131)
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Approximate Nash Equilibria V
Question: Prove (129), (130) and (131).
By Step 3, we have mt = mX

t by the fixed point, and hence mY
T = 0.

Thus, we obtain

mY
t = −

∫ T

t
e(α+q)(s−t)Z 0,∗

s dW 0
s , t ∈ [0,T ].

Then, dmt = dmX
t = −mY

t dt + ρσdW 0
t .

In order to obtain m = (mt)t∈[0,T ], we have to find Z ∗,0, and this
implies that we need to find the solution (Y ∗,Z ∗) of BSDE (130).
Now, we assume that the first solution component Y ∗t of BSDE (130)
has the form given by:

Y ∗t = −ηt(mt − X ∗t ),

where t → ηt is a C1-deterministic function.
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Approximate Nash Equilibria VI

Plugging it into (130) to have that Z 0,∗ = 0 and Z 1,∗ = ηtσ
√
1− ρ2

with

∂tηt = 2(α + q)ηt + η2t − (ε− q2), ηT = C . (132)

Therefore mY
t ≡ 0 and hence mt = mX

t = E [X ∗0 ] + σρW 0
t .

MFG Strategy with Finite Players: u∗,it = (ηt + q)(X ∗t − X ∗,it );
MFG Strategy with Infinite Players: u∗t = q(mt − X ∗t )− Y ∗t .

Question: Does it hold that Ji (u∗,1t , . . . , u∗,Nt )→ J(u∗) as N →∞?
We next apply HJB equation approach to find an approximating Nash
Equilibrium:
In order to apply HJB equation approach, we assume that Nash
Equilibrium has a Markovian feedback form, i.e. ut = u(t,Xt).

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 284 / 291



Mean Field Games Approximate Nash Equilibrium

Approximate Nash Equilibria VII
Then, the limiting state process is given by

dXt = α(mt − Xt)dt + u(t,Xt)dt + σ

(√
1− ρ2dWt + ρdW 0

t

)
.

Here mt = E [Xt |FW0
t ] by the fixed point in Step 3.

For ρ0 ∈ P(R), define the measure-valued process as:

µt(dx) =

∫
R
E
[
δX x0,µ

t
(dx)

∣∣FW0
t
]
ρ0(dx0), on B(R). (133)

Here X x0,ν for νt ∈ P1(R) satisfies that

X x0,ν
t = x0 +

∫ t

0
α(〈νs , I〉 − X x0,ν

s )dt + u(s,X x0,ν
s )ds

+ σ

(√
1− ρ2Wt + ρW 0

t

)
. (134)
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Approximate Nash Equilibria VIII
Then, µ = (µt)t∈[0,T ] defined by (133) is an (FW0

t )t∈[0,T ]-adapted
P(R)-valued process with µ0 = ρ0.
Hence, 〈µt , I〉 =

∫
R E [X x0,µ

t |FW0
t ]ρ0(dx0) with I(x) := x .

The process µ = (µt)t∈[0,T ] defined by (133) satisfies the following
stochastic FPK equation given by

Stochastic FPK equation: for all f ∈ C∞0 (R),

〈µt , f 〉 = 〈ρ0, f 〉+

∫ t

0
〈µs ,Aµs f 〉ds +

∫ t

0
〈µs ,Lf 〉dW 0

s , (135)

where the operators are given by: for ν ∈ P1(R),

Aν f (x) := [α(〈ν, I〉 − x) + u(t, x)]f ′(x) +
σ2

2 f ′′(x);

Lf (x) := σρf ′(x), x ∈ R. (136)
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Approximate Nash Equilibria IX
Question: Similarly to (70), prove the existence of solutions to
stochastic FPK equation (135) using the fixed point argument.
Let ρ0(dx) = u0(x)dx , i.e., u0 is the initial density function of µ.
Then, µt(dx) = p(t, x)dx where p(t, x) satisfies the following
stochastic forward Kolmogorov equation:

∂tp(t, x) +A∗p(t, x) + L∗p(t, x)dW 0
t = 0, (t, x) ∈ (0,T ]× R;

p(0, x) = u0(x), x ∈ R, (137)

where A∗ (resp. L∗) are the adjoint operator of A (resp. L).
Question: Write the expression of the adjoint operators A∗ and L∗.
Prove that mt = 〈µt , I〉 =

∫
R xp(t, x)dx satisfies that

dmt = ρσdW 0
t , m0 =

∫
R
xu0(x)dx . (138)
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Approximate Nash Equilibria X

Then, by Step 2, we conclude our limiting MFG model for a
representative agent:

The MFG Value Function: for (t, x ,m) ∈ [0,T ]× R× R,

V (t, x ,m) := inf
u∈U

E
[
g(XT ,mT ) +

∫ T

t
f (Xt ,mt , ut)dt

∣∣∣Xt = x ,mt = m
]
.

The State Process (Xt ,mt)t∈[0,T ]:

dXt = α(mt − Xt)dt + u(t,Xt)dt + σ

(√
1− ρ2dWt + ρdW 0

t

)
;

dmt = ρσdW 0
t . (139)

Question: Derive the HJB equation of the above control problem of a
representative agent and solve this control problem.
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Approximate Nash Equilibria XI
If ρ = 0, i.e., there is no common noise in the model, then the above
equation reduces to MFG equation proposed in P.L. Lions’s paper:
Pierre-Louis Lions (1956-): French mathematician. His research
interest is Nonlinear PDE, he is the recipient of the 1994 Fields Medal.

Figure: Pierre-Louis Lions (1956-)
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