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Course Outline

@ Treasure Box

© Stochastic Differential Equations

© Feynman-Kac Formula

@ Fokker-Planck-Kolmogorov Equations
© Propagation of Chaos

© Replicator-Mutator Equations

@ Mean Field Games
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Course Outline

@ Treasure Box
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Treasure Box

Treasure Box

@ | would recommend you an important reference on a deep
introduction of stochastic analysis tools:
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Figure: A Magic Book on Stochastic Analysis
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Course Outline

@ Stochastic Differential Equations
@ Well-Posedness of SDEs
@ Examples for SDEs
@ Yamada-Watanabe SDEs
@ Linear Continuous Markov Processes
@ Feller's Boundary Classification
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WEllHReszdliess off SDiEs
Well-Posedness for SDEs |

Let D C R” be a domain, i.e., an open connected subset of R”

Consider functions b : D — R™! and ¢ : D — R"™*m

Filtered probability space (Q2, F,F, P) with the filtration
F = (Ft)eefo, 1) satisfying the usual conditions

o Let W = (W;)cpo,7) be an m-dimensional (P, IF)-Brownian motion
@ An Itd SDE can be described as: for (t,x) € [0, T] x D,
t t
X :x+/ b(x;)ds+/ o (X2)dW, (1)
0 0
FV part I1td stoch. integral

o Let D =R". Assumption on (b,0):
(Ajp) b:R"— R™! and o : R” — R™ ™ are Lipschitiz continuous with
linear growth.
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WEllHReszdliess off SDiEs
Well-Posedness for SDEs Il

o Let FW be the filtration generated by Brownain motion W
@ Then, the existence and uniqueness of strong solutions of SDE is
given by:
Theorem (Well-posedness of SDEs with Strong Solutions I)

Let (Ajip) be satisfied. Then, for any T > 0, there exists a unique
FW-adapted, continuous solution X* = (X{)¢e(o,7] satisfying

IX*(|5F = El S[UP IXX|P| < 400, p>1.
t

)

@ Proof. For p > 1, let XP be the set ofIFW—adapted, continuous
processes X = (Xt):ejo, 7] With Xo = x satisfying || X[+ < +oo.

@ Then (X£,| - |r) is a Banach space.
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WEllHReszdliess off SDiEs
Well-Posedness for SDEs Il|

@ Define a mapping T on &X¥ as: for any X € X7F,
t t
(TX): ;:x+/ b(Xs)ds+/ (X )dW,, t € [0, T,
0 0

@ Clearly, (TX)o = x and t — (TX); is continuous using the continuity
of stochastic integrals. Using It6 formula, the linear growth condition
of (b,0), BDG inequality and Grownall's lemma, || TX|/% < +oc.
Hence TX € XY.

e For any X, Y € XY, using the assumption (Aj;,) and the similar
argument above, we have

ITX = TY[lr < CrpllX =Y,

where Ct , is a positive constant such that T — Ct , is a non-
decreasing function satisfying limr 9 Ct , = 0.
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WEllHReszdliess off SDiEs
Well-Posedness for SDEs IV

@ Choose T = tg small enough such that C7 , < 1, we have a unique
fixed point X* = TX* on [0, tp].

Since C7 , depends on T, p only, we can divide [0, T] into infinitely
many small time intervals. In each small interval, we have a unique
fixed point and fit them together on [0, T].

@ The proof of Theorem 1 is complete.
@ In many cases, (b,0) may be not globally Lipschitz continuous

@ We impose the following conditions:

(Ape) b:R" — R™ and o : R” — R™" are locally Lipschitz continuous.
Remark: (Ajc) implies the pathwise uniqueness of SDE.
(ALyn) There exists a function V : R” — R satisfying

(i) Let gr :=inf4>r V(x), then limg_o gr = +00;
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___________Stochastic Differential Equations JRICIEEE it
Well-Posedness for SDEs V

(ii) There exists a constant C > 0 such that, for all ¢t € [0, T],
t
VX)) < V) + € [ (0 EVO s
0

Here 7r :=inf{t € [0, T]; |X{| > R} and 7r = T if the set is empty.

Theorem (Well-posedness of SDEs with Strong Solutions II)

Let assumptions (Ajoc) and (Aryn) be satisfied. Then, for any T >0,
there exists a unique F" -adapted, continuous solution of SDE (1).

@ Proof. By Theorem 1, using the assumption (Aj), we have, for any
t € [0, T] and R > 0, SDE (1) has a unique continuous strong
solution on [0, t A 7R].
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WEllHReszdliess off SDiEs
Well-Posedness for SDEs VI

@ We prove 7r — T as R — oco. In fact, by the condition (ii) of
(ALyn), we have, for all t € [0, T],

E[V(XZr ] < e (1+ V(x)).

@ Therefore, for all t € [0, T], and R > 0,

1 1
P(TR < t) < —E []17R<tV(XTR)] = 7E[]17'R<tv(XtATR)]
qar qar
eCt
< —(1+4 V(x)).
ar

e This yields that P(tg < t) — 0 as R — oo, using the condition (i) of
(ALyn)-
@ Then, the proof of Theorem 2 is complete.
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WEllHReszdliess off SDiEs
Well-Posedness for SDEs VII

@ Question: Let conditions of Theorem 1 hold and Z = (Z;)¢[o,7] an
m-dimensional continuous semimartingale. Prove that the following
SDE:

t
XX = x +/ o(XX)dZs, te[o,T],
0

admits a unique F4-adapted, continuous solution for x € R".

@ Hints: Consider the canonical decomposition of the continuous
semimartingale Z given by Z = M + A, where M € M/, and A€V

o Firstly, consider dA << dt and d[M, M] << dt
e Secondly, consider using the time change
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=z s i SIDIES
Examples for SDEs |
@ Linear SDE. A general linear SDE can be written as:
t
X, = Yt+/ XedZ., te[o,T], 2)
0

where both Y = (Y¢)¢cjo, 7] and Z = (Zt):ejo, 7] are one-dimensional
continuous semimartingales

Lemma (Closed-Form of Solutions of Linear SDE)

The linear SDE (2) admits a closed-form solution given by

£(2): <Y0+/ (Y, — d[Y, 7], ))

where £(Z) is Doléans-Dade exponential of the semimartingale Z.

v
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Examples for SDEs I

@ Proof. Let us first consider the simple linear case:
t
X! = 1+/ Xldz,, tec[o,T].
0

Then, the solution is Doléans-Dade exponential of Z, i.e., X} = £(Z);
@ Question: Write the expression of £(Z).
@ Consider the solution of the linear SDE admitting the form:

Xt — thl-ta te [07 T]> (3)

where L = (Lt)¢c[o,7] is @ continuous semimartingale with Lo = Yo.
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Examples for SDEs IlI

@ By integration by parts, we have

dXe = d(X!L:) = LedX} + XtdLe + d[ X2, L],
= X}LidZ, + XtdLe + d[ X2, L],
= X;dZy + XtdL; + d[X1, L],

o Compare it with (2), i.e., dX; = X;dZ; + dY}, we obtain
dY, = XtdL; + d[X* L], Lo = Yo

@ This gives that

dl, = (XHdY, — (XHYd[X, L)e, Lo = Yo

FV part of L
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Examples for SDEs IV

@ Therefore, it holds that
dixt, ), =d U dezs,/ 1dY] =d[Y, Z]:.

e Using (4), we get

dL; = (XH7(dY: — d[Y, Z]) = £(2)7Y(dY: — d[Y, Z]:)
Lo = Y.

@ Then, we arrive at
L= Y0+/ Y, — d[Y, Z].), telo,Tl.
@ Thus, the proof of Lemma 3 is complete.
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Examples for SDEs V

@ The above linear SDE includes many important examples of
stochastic models in practice

o Let W = (W;)tepo, 1) be a scalar Brownian motion, i.e., m =1

@ Ornstein-Uhlenbeck (OU) process. The OU process can be described
as follows: for x € R,

t
xg:x+/ (B — XX)ds + oW, te[o,T]
0

where a, 0 > 0 and 8 € R.

@ OU process is a class of important stochastic models in physics
(Langevin Equation) and finance (Vasicek Model)
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Examples for SDEs VI

@ The discretization of OU processes is a AR(1) model: for 5 =0,
dX{ = —aXdt + odW,;
?_’_1 — X; = —CKX? +O'(Wt+]_ — Wt)
f=(1—a)XF+¢& €~ N0, 0?)

@ The OU admits a closed-form solution:
t
XX = xe 4 B(1— e ) + / oe g,
0

@ The OU process is both continuous Gaussian process and
semimartingale:

o Mean function:
E[X)] = xe ' + B(1 — ™).

o OU process is mean-reverting since lim;_,o. E[X}] = 8 € R.
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs VII
e Covariance function:

2
Cov(XZ, XX) = ‘2L (e—a(r—s) _ e—a(t+s)) .

(07

@ The sample paths of OU-processes show a mean-reverting property:
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Figure: Sample path of OU processes
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Examples for SDEs VIII

@ Questions: Provide an example which is a continuous Gaussian
process, but not a semimartingale

@ Langevin equation. dV; = —aVidt + dW;. The closed-form solution
is given by
t
Vi =e ot (Vo —l—/ eadeS>
0

° fot Vids: it is used by physicists as a model of physical Brownian
motion

o Recently, Langevin equation and its variation are used to improve the
performance of SGD algorithm in Machine Learning and Non-Convex
Optimization Problem.

@ Paul Langevin (1872-1946): French physicist, Student of French
physicist Pierre Curie (1859-1906):
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Stochastic Differential Equations Examples for SDEs

Examples for SDEs IX

Lorentz, Einstein and Langewin in 1927

Figure: Left: Hendrik Antoon Lorentz (1853-1928); Middle: Albert Einstein
(1879-1955); Right: P. Langevin
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Examples for SDEs X

@ Geometric Brownian motion. dS; = uS;dt + oS:dW,
So=x€eD= (0,00).

@ The GBM admits a closed-form solution given by

t 2
St = xexp (/ (n— %)ds + aWt> = xe"E(o W),
0

@ In mathematical finance, GBM is called continuous time
Black-Scholes stock model.

@ Myron Samuel Scholes (1941-): Canadian-American financial
economist, Frank E. Buck Professor of Finance, Emeritus, at the
Stanford Graduate School of Business, 1997 Nobel Prize Winner in
Economics:
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E-eriplzs 2 SDLE:
Examples for SDEs XI
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Figure: Left: Robert C. Merton (1944-); Right: M. Scholes
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Examples for SDEs XII

@ The discretization of BS model has a well-known explanation in
finance:

5ti+1 - Sti

= plAti+o0& , &= Way ~ N(O, At;)
St,' —_——

——— Return+Vol. Risk
Stock Return

where At; :=tiy1 — t;

Inhomogeneous GBM. dX; = (6 — aX;)dt + o X;dW,;

It is also referred to GARCH model (see Lewis (2000))
Question: Write the closed-form solution of GARCH model.

Inverse GARCH model. dX; = (0 — aX;)X:dt + o X;dW; where
a,c >0and 6 > ¢?
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Examples for SDEs XII|

@ Question: In the above Inverse GARCH model, note that
b(x) := (0 — ax)x is only locally Lipschitz continuous. Prove the
existence and uniqueness of strong solutions of the above SDE.
e Question: Let Y; = (X;)~! with X; is the above inverse GARCH

model. Then Y; is an GARCH model. This is the reason why we call
X an inverse GARCH model.
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Yamada-Watanabe SDEs |

o We now let W = (W;).jo, 7] be a scalar Brownian motion.

@ We consider an example introduced by It6 and Watanabe (1978):
t 1 t 2
Xt = / 3X$ds Jr/ 3X$ dWs.
0 0

@ Then X; =0 and X; = WE’ are two different solutions, i.e.,
uniqueness does not hold.

@ The coefficients b(x) = 3x3 and o(x) = 33, although continuous in
X, are not smooth at x = 0. They are not locally Lipschitz continuous.

@ The continuously differentiable functions are locally Lipschitz

continuous. However, f(x) = |x| is locally Lipschitz but not
continuously differentiable.
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Yamada-Watanabe SDEs ||

o Consider the Lipschitz continuous function b : R — R satisfying
b(0) > 0.

Lemma (Well-posedness of Yamada-Watanabe SDEs)

Let p > % For x,0 > 0, the following one-dimensional SDE:

t t
XtX:x+/ b(Xs)ds—i—a/ (X)PdWs, teo,T]
0 0

admits a unique (nonnegative) strong solution.

@ Proof. This is a corollary of Yamada and Watanabe (1971).
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Yamada-Watanabe SDEs Il

o Let p(x) =oxP for x >0 and p > % Then, p: Ry — R isa
strictly increasing function with p(0) = 0 and

/ p~2(x)dx = 400, forall e >0 (5)
(0,6)

@ Verify the existence of weak solution of above SDE via martingale
problems of Stroock and Varadhan (1969)

@ Prove the pathwise uniqueness of the above SDE by introducing a
sequence of auxiliary C?-functions:

o By (5), there exists a sequence of strictly decreasing (ax)xk>1 C (0, 1]
s.t. ag =1, as =0, and

ak—1
/ p 3 (x)dx =k, Y k>1.

ak
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Yamada-Watanabe SDEs IV

@ For each k > 1, construct a C(R)-probability density function pj with

support (ak, axk—1) satisfying 0 < py(x) < k’%(x) for all x > 0.

o Define a sequence of auxiliary C2-functions by: for k > 1,

Vk(x) = /O . /0 " pe(s)dsdy, x € R. (6)

@ Then, [, (x)] <1, limg_oo Yi(x) = |x| for x € R, and (¢ )k>1 is
nondecreasing.

@ We can verify the nonegativity of the solution by using the comparison
theorem of SDE or the theory of linear continuous Markov processes.

@ Question: Prove that the following estimate holds, for x;,x, > 0,
t
EIXE = X1 < I =l + Lof | [ 10— X7 ds] ()

where Ly, is the Lipschitz coefficient of the drift x — b(x).
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Linear Continuous Markov Processes
Linear Continuous Markov Processes |

@ We here discuss a class of continuous and strong Markov processes
X = (Xt)e>0 whose state space /| = (¢, r) which is an open, closed or
semi-open interval of R.

@ We assume that the death-time ( is oo, a.s., i.e., P({ < o0) =0.

o Let the linear continuous Markov process (LCMP) X be regular, i.e.,
for any x € int(/) = (¢,r) and y € I,

P(T, < c0) >0,

where T, :=inf{t > 0; X; =y}.
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Linear Continuous Markov Processes
Linear Continuous Markov Processes I

@ In other words, for any regular LCMP X, starting with any interior
point x, any point y € [ can be reached by X with positive probability.

Lemma (Scale Function Formula)

For regular LCMP X, there exists a continuous, strictly increasing function
Sonlst foralla,b,x el withf <a<x<b<r,

S(x) — S(a)

PX(T/_-, < Ta) = w

In addition, if S is another function with the same properties, then
S(x) = aS(x) + B with o > 0 and 3 € R.
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Linear Continuous Markov Processes
Linear Continuous Markov Processes ||

@ Proof. Let us first introduce shift operator. For any s > 0, one can

construct F/F-measurable mapping s : Q — Q as:
Xits(w) = Xe(Osw), YVweQ, s, t>0.

@ It is also convenient to use the canonical probability space
Q = C([0,00)). Then, (9) is equivalent to

Osw(t)=w(s+1t), Ywel, s, t>0.
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Linear Continuous Markov Processes
Linear Continuous Markov Processes |V

@ Note that T, < Ty and Ty < T,, however, we don’'t know the
relationship of T,, Tp and Ty, T,.

o Consider the event {T, < Ty, T, < Tp}.
@ Clearly, on {T, < Tp}, we have T, < Ty and T, < T, then

Tg = Ta+ TgOGTa, Tr = Ta+ T,OGTE.
@ Using the strong Markov property, we get

Px(Tr < Tg, Ta < Tb) = EX []1 TE,<TbﬂTa—i-T,097—a<T‘-,,—&-TZOGT‘3

= Elr,<r,lr<7,007.]
= EX {EX []l Ta<Tb]1Tr<T£ o HTa"FTa]}
= EX {]1T3<TbEX []1 T, <Tg o HTa"FTa]}

= E{L1,<1,Exy, [L1,<1,]} = P(To < To)Po( T, < T0)
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Linear Continuous Markov Processes
Linear Continuous Markov Processes V
) Similarly, PX(Tr < Tg, Tb < Ta) = PX(Tb < Ta)Pb(Tr < Tg)
@ Then, it holds that

S(x):== P(T, < Ty)
= P (T, < Tp)S(a) + Pu(Tp < T,)S(b)

Note that Py (Tp < To) 4+ Pe(Ta < Tp) = 1.
Then, it holds that

5(x) = (1= Pu(Tp < T3))5(a) + Pu(Tp < T2)S5(b)

Solving Py (Tp < T,) in terms of S(x), S(a) and S(b) to get the scale
function formula

Question: Prove that / 5 x — S(x) is strictly increasing and
continuous.

@ We call x — S(x) scale function of the regular LCMP X
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Stochastic Differential Equations Linear Continuous Markov Processes

Identification of Scale Function |

o If the scale function of a LCMP X can be taken to be S(x) = x, then
we call this process is on its natural scale

@ The following theorem can used to identify the scale function of some
special LCMPs:

Theorem (Identification of Scale Function)

A locally bounded Borel function g is a scale function if and only if the
stopped process g(X)""Tr = (g(XenT,aT,))t>0 is a local martingale.

o Proof. <= Let g(X) ™" is a local martingale.

@ For { < a< x < b<r,since g is locally bounded and
X "o ¢ [a, b], g(X)T"Tt is a bounded martingale.
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Linear Continuous Markov Processes
Identification of Scale Function Il

@ Using the optional stopping theorem, we have
g(x) = Ex[g(XT.a1,)],  x € (a,b).
o Note that
Exlg(X7.a1,)]l = 8(a)(1 = Pu(Ty < T3)) + 8(b) Pu(Th < Ta)
@ Then, it holds that
g(x) = g(a)(1 — Px(Tp < T,)) + g(b)Px(Th < Ta)
@ This yields that

P(Tp < Ty) =
(b a) g

@ By the definition of the scale function, g is a scale function.
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Linear Continuous Markov Processes
Speed Measure of LCMP |

For any open interval J = (a, b) satisfying [a, b] C I, the exit time of
J is defined by
oy :=inf{t >0; X; ¢ J}.
Then, P-ass., 05 =T,AN Ty forx € J,and o, =0 for x ¢ J.
Define my(x) := Ex[o,] for x € I.
Let Jog = (c,d) C J (ie, a<c<d<b) Theno, >0y,
For a < c < x < d< b, we have

my(x) = Ex[oy] = Eloy g + 04005, ]

= EX[aJc,d] + EX[JJ ° eJc,d] = ch,d(X) + EX[UJ o HJc,d]

o Note that x € J. 4, then m,__(x) > 0.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 37 /291



Linear Continuous Markov Processes
Speed Measure of LCMP I

@ We also have from the strong Markov property that
EX[O'J o H_jc’d] = EXTC [O'J]PX(TC < Td) + EXTd [UJ]PX(Td < Tc)
=my(c)Px(Te < Tg) + my(d)Px(Ty < T¢)
@ By Lemma 5, we have

S(x) - S(c)

P(Tg < Te) = S(d)—S(0)

, P(Te < Tqg) =

@ As a summay

mM:mwM+mﬂ@g:§3+W@§@4m)

@ Since my_,(x) > 0, x = my(x) is a S-concave function.
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Linear Continuous Markov Processes
Speed Measure of LCMP I

@ Define a function on [ x [ as:

(S(x) = S(a))(S(b) = S(v))
S(b) — S(a) asxsysh
Gi(x,y) =14 (S(y) —S(a))(5(b) — S(x))
X,y 5(6) - 5() , a<y<x<hb,
0, otherwise.
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Stochastic Differential Equations Linear Continuous Markov Processes

Speed Measure of LCMP IV

@ Using the theory of S-concave function, we have

Theorem (Existence of Speed Measure)

There exists a unique Radon measure m defined on int(l) such that, for
any J = (a, b) satisfying [a, b] C I,

mi) = [ Gix.yIm(dy). x € J.

@ The measure m above is called speed measure of LCMP X.

@ Question: For any open subset J = (a, b), x € J, and any
nonnegative Borel function f, it holds that

E | [ F0x)as] = [Gten)f(y)midy). (10)
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Linear Continuous Markov Processes
Speed Measure of LCMP V

@ Hints: Pick ¢ such that a < ¢ < b. Define, for x € J,

gy

gc(X) = Ex |: 0 ]1C<Xt<bdt:| .

Then gc is a S-concave function on J and g(a) = g.(b) = 0.

@ The following theorem can be used to identify the speed measure of a
LCMP:

Theorem (Identification of Speed Measure)

Let A be the infinitesimal generator of the regular LCMP X and its
domain be D(A). Let | be any sub-interval of R. Define

0 ) -
de( ): }!HXS(y)—S(X)’

Then, for any bounded f on D(A),

if exists.

v

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 41 / 291



Linear Continuous Markov Processes
Speed Measure of LCMP VI

(i) 9 exists except possibly on the set {x; m({x}) > 0}.

(ii) For x1,x2 € Int(/) for which this S-derivative exists,

S5t = e = [ ar(y)m(ey).

@ Proof. For the bounded f on D(.A), Dykin's formula yields that, for
J=(a,b) ClInt(/) and a < x < b,

TanTy
E. [F(Xram,)] — F(x) = Ex [ /0 Af(Xs)dsl

e Using (10) in Question, we have, for o, = T, A T,

| [ af()ds] = [ 61(x ) AF ()
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Linear Continuous Markov Processes
Speed Measure of LCMP VII

@ This yields that

E[f(Xram)l = () = [ Gilx.y)AF(y)m(dy).
@ Note that
Ec[f(XToa1,)] = f(a)Px(Ta < Tp) + F(b)P(Tp < Ta)

o By Lemma 5, we have

Pu(Tp < T,) = g(x) =50) p (1, <) = 2BV =5
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Linear Continuous Markov Processes
Speed Measure of LCMP VIII

@ Combine the above equalities, we have

f(b) —f(x)  f(x)—f(a) _
S(b) —S(x) S(x)—S(a) /, H,(x, y)Af(y)m(dy)
where H,(x,y) is defined as
S(y) —S(a) (a)
S()—S(a) S b ATY=EX
HJ(va) = M N
S(b) — S(x) = <1, x<y<b,
0, otherwise.
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Feller's Boundary Classification |

@ Consider the one-dimensional SDE:

@ We impose the following assumptions:
(ND) o(x) >0 for x € I;
(LI) for all x € [, there exists € > 0 s.t.

/X“ 1+ [b(y)|
x—e 02(y)

@ The generator of X is given by, for f € C?(R),

dy < oo.

_ / @ 7
Af(x) = b(x)f'(x) + 5 f"(x), xeR
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Feller's Boundary Classification |l

@ In order to find a scale function S of X, by Theorem 6, we solve
AS(x) =0, xeR. (11)

@ The solution of (11) is given by, for some ¢ € R,

S(x) = /CX exp (_ /Cy ;?8 dz) dy, x €R. (12)

o Note that x — S(x) is twice differential. Then g—g(x) = 00

e From (12), we obtain

S'(x) = exp (- / ¥ 2b(z) dz) s = — 22 g,

o%(z)

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 46 / 291



Feller's Boundary Classification IlI

@ Then, it holds that
df df < [f'(y)]’
E(Xz) - E(Xl) = /><1 [5,()/)} dy
=2 " 32N F"(y) + F(1)b(y)
x1 a?(y)S'(y)

[ Af(y) [
P / IV = / Af(y)m(dy).

@ This implies that, the speed measure of X is given by

dy

m(dx) = 02(x)25’(x)dx' (13)
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Feller's Boundary Classification IV
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Stochastic Differential Equations Feller's Boundary Classification

Feller's Boundary Classification V

Figure: W. Feller (1906-1970): Croatian-American mathematician.
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Feller's Boundary Classification VI

@ Hereafter, define s(x) = S'(x) and m(x) = m(dx)/dx.

Definition (Inaccessible, Absorbing, Reflecting Endpoints)

For the end-point b of the interval | = (¢, r),
(i) it is called inaccessible, if b € I°;
(ii) If b €/, then b is called absorbing, if Pp(T, < c0) =0 for all y € I'\ {b};

(iii) it is called reflecting, if there exists y € I\ {b} s.t. Py(T, < 00) > 0.

@ Below, we only discuss the conditions under which the endpoints of /
are inaccessible.
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Feller's Test for Explosion |

@ For the interval | = (¢, r), consider strictly monotone sequence
(gk)kZI and (rk)kZI satisfying £ < £y < rx < r, limg_o0 by = ¢,
limg_yoo rk = r and

Ty = inf{t > 0; X; ¢ (fk, rk)}, k> 1.

@ The explosion time is defined as

T:=inf{t >0, Xe & (4,r)} = klim Tk.
—00

@ The related probability to Tx can computed by the scale function
formula in Lemma 5.
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Feller's Test for Explosion Il

o Let us define the following quantities: for y € [,

Y, = /yr (/yv m(u)du) s(v)dv,
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Feller's Test for Explosion IlI

Theorem (Feller's Test for Explosion)
Recall (14). Let (ND), (LI) hold. Then, it holds that
(i) ¢ and r are inaccessible (i.e., P(T = o0) = 1) if and only if ¥y =%, = 400

(i1) r is a natural boundary if ¥, = N, = +00
(i2) r is an entrance boundary if ¥, = 400 and N, < +o0
(i3) £ is a natural boundary if ¥ = Ny = +o0
(i4) ¢ is an entrance boundary if ¥y = +o00 and Ny < 400

@ For this theorem, please refer to Karlin and Taylor (1981), Table 6.2
@ Question: For GBM,

t t
X =x +/ MX;(ds+/ oXZdWs, xe€l:=(0,00),
0 0

where € R and ¢ > 0. Prove that:
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Feller's Test for Explosion IV

o the boundaries 0 and oo are all inaccessible, i.e.,
PXfel, vt>0)=1.

@ Question: For Yamada-Wantanabe process,

t t
X :x+/ (a+bX5X)ds+/ S(XXPdW,, x € 1= (0,0),
0 0

where a,0 > 0 and b € R. Prove that:

e when p = % the boundaries 0 and oo are inaccessible, i.e.,
P(XX € l, ¥ t>0)=1if and only if 2a > o2,

e when p > 1, provide the conditions under which the boundaries 0 and
oo are inaccessible.
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Feller's Test for Explosion V

@ Question: Consider the following so-called stepping-stone process
given by

t t
X¢=xt [ (a4 bx)ds [ o= 0 - X)W
0 0
x € l:= (67 r)’ (15)

where a,0 > 0 and b € R. Do that

@ provide the conditions under which the boundaries ¢ and r are
inaccessible.
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Feynman-Kac Formula History of Feynman-Kac Formula

History of Feynman-Kac Formula |

@ In the 1940s, R. Feynman discovered that the Schrédinger equation
e the differential equation governing the time evolution of quantum
states in quantum mechanics
could be solved by a kind of averaging over paths, an observation
which led him to a far-reaching reformulation of the quantum theory
in terms of “path integrals"
@ Upon learning of Feynman'’s ideas, M. Kac realized that a similar

representation could be given for solutions of the heat equation with
external cooling terms

e a mathematician at Cornell University, where Feynman was, at the
time, an Assistant Professor of Physics

@ This representation is now known as Feynman-Kac formula

@ Later it became evident that the expectation occurring in this
representation is of the same type that occurs in derivative security
pricing
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Iilisian of Feyaen- e ek
History of Feynman-Kac Formula Il

e R. Feynman (1918-1988): 1965 Nobel Prize in Physics

e Mark Kac (1914-1984): probability, statistical physics, Feynman-Kac
path integral

Figure: Left: R. Feynman; Right: M. Kac
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Feynman-Kac Formula History of Feynman-Kac Formula

Reference on Feynman-Kac Formula |

@ | recommend you the book by Friedman (1975) on the theory of linear
PDEs and their stochastic representation:

chaptera stochastic prowsses

2 MarkoV prosses

3 Brownian Motions

4 The Stochastic I

5 Stochastic Diarential Bptat.ms

6 Elliptic © partbalic poEs  Relasms +o SDEs
e of U The Gumeren — Martin- Girsaney Theorem
Rl e 8 ASyM-P(-ot:c Estimudes for Solutions

il 9 Reatrent @ Trinsieat solutims

Figure: Friedman's Book, Volume 1
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Feynman-Kac Formula History of Feynman-Kac Formula

Reference on Feynman-Kac Formula Il

o A. Friedman (1931-): Distinguished Professor of Math. & Phys.
Sciences at Ohio State University; Areas of Expertise: PDEs,

Mathematical Biology, SDEs, Control Theory and Free Boundary
Problems.

Figure: Avner Friedman (1931-)
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Dirichlet Problem |

@ Recall that D C R” be a domain:
e i.e., an open connected subset of R"

e Consider functions b: D - R™1 ¢:D - R™Mandg: D — R

@ The second-order differential operator acted on C2?(D) is defined as:
for f € C?(D),

AF(x) := b(x) TV f(x) + %tr[a(x)Vif(x)], x €D,

where a(x) := 00" (x), Vx = (0x,---,0x,)" and V2 is the
corresponding Hessian matrix.

@ We impose the following assumption (Af,p) introduced by Friedman
(1975), page 144:
(F1): The domain D is bounded and the boundary OD of D is in C2

e i.e., barriers exist at the all points of 9D.
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Dirichlet Problem Il

(F2): The operator A is uniformly elliptic in D:
o there exists C > 0 s.t.

n

> ap(x)6ig = CIEP
ij=1
for all x € D and £ € R".
(F3): b, a are Lipschitz continuous in D.
(F4): g <0 and g is Hélder continuous in D.
(F5): Given functions f : D — R and ¢ : 9D — R, they satisfy that

e f is Hélder continuous in D;
@ ¢ is continuous on 0D.
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Feynman-Kac Formula Dirichlet Problem

Dirichlet Problem IlI

Theorem (Well-posedness of Dirichlet Problem)

Let (Agip) hold. Consider the Dirichlet problem given by
(A+ g)u(x) — f(x) =0, in D; u(x) = ¢(x) on ID. (16)

Then, there is a unique solution u € C?(D) N C(D) of Dirichlet
problem (16).

@ Proof. This follows from Theorem 6.2.4 of Friedman (1975), page
134.

@ Question: Consider the SDE given by: for (t,x) € Ry x R”,

S S
Xt :X+/ b(x:vX)err/ (X)W, s>t (17)
t t

Let op be the exit time of D for X, i.e., op :=inf{t > 0; X; ¢ D}
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Dirichlet Problem IV

o Note that even if (t,x) € Ry x D, the Lipschitz continuity of b, o on
R" does not yield that X** must be in D, P-a.s.

o If (Agip) holds and E,[op] < oo for all x € D, then the solution u of
Dirichlet problem (16) admits the probabilitistic representation:

ulo) = E [0 exe ([ g(x0)as)

_E { /0 " H(XO) exp ( /O ’ g(X,O’X)dr> ds} .

@ Question: Using Theorem 11 and then applying It6 formula to

u(Xt) exp </0tg(Xso’X)ds> , ontel0,op]
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Dirichlet Problem V

Cxample:  Cmgidar 1-dim SDE:

d¥e = b(¥) At+6(Xe)a(Wt Lcmp

Xe € I=(1, 1), 002l <rgtoo

let D2(b) €T, s L« acbeT, and
Afwz if_"a?'(mn- boofmo, xe1,felm)
We solwe te Pllavy Divilet prvlom :

{Aum =0, X€D
WR = &), xead=ia,b)
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Dirichlet Problem VI

Notethat the Orit £ims:

UD- \"f{ﬁo X)c&m TaNTy,
Thaw, fe ol xeD
Bl o) = Slep(m.‘;)m(oha),
whare 5
{W\(M\: FwSm o ——— spad measung

S = S ex?( i 1‘,’:*’)&) du= Sl Gunckion
I% T [Gﬂ( too, Ham | %lel XED
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a Dirichlet Problem

Dirichlet Problem VII

Wiy = & L 4( KTy, )
s S(b)- Sth S(1)-S(a)
= Roadiiba i ¥\ 1§ Faulliubudt
o Sk =S(a) S\~ Slay
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Initial-Boundary Problem |

@ We incorporate time variable t into the Dirichlet problem and this
results in the initial-boundary problem

@ The initial-boundary problem is described as:

(0 + A+ g)u(t,x) = f(t,x), in(t,x)€[0,T)xD,
u(T,x) = ¢(x), on D, (18)
u(t,x) = h(t,x), on][0,T)xaD.

@ It is more reasonable to call (18) a terminal-boundary problem.
However, we can change t to T — t and then transfer it into an
initial-boundary problem

@ We impose the assumption (AgB):
(FIB1): (F1)-(F4) in the assumption (Afip) hold
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Initial-Boundary Problem Il

(FIB2): The functions f : [0, T) x D - R, ¢ : D — R and
h: [0, T) x 0D satisfy
o f is Holder continuous in [0, T) x D;
e ¢ is continuous on D;
o his continuous on {T} x DU[0, T] x D and h(T,x) = ¢(x) for
x € 0D.

@ The following well-posedness of the initial-boundary problem (18) has
been proved by Theorem 6.5.2 in Friedman (1975), page 147.
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Initial-Boundary Problem IlI

Theorem (Well-posedness of Initial-Boundary Problem)

Let (AFrig) hold. Then, the initial-boundary problem (18) admits a
unique solution u € C12 := C%2([0, T) x D) N C([0, T) x D) such that

O't
u(t,x) =E lh(aE,Xg’g)exp </t Dg(Xst’X)ds> ]la_tr<-,—]

+E

¢ T
G(X7) exp < /t g(XJ’X)dS> 10;—71

- E [/tUB f(s, XE¥) exp (/ts g(X,t’X)dr> ds] ,

where ot := inf{s € [t, T); Xs ¢ D} for x € D. It is defined as T if the
set is empty.

V.
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Initial-Boundary Problem IV

@ Let us make the following assumptions:

(Ap,) b: D — R™! and o : D — R™™ are locally Lipschitiz
continuous.
(Ax) For all (t,x) € [0, T] x D, the solution X** of SDE (17)
neither explodes nor leaves D before T:
o ie, P(supscp, 7y |Xe*| < 00) = P(X{* €D, Vselt, T])=1.
@ The assumption (Aj ) implies the pathwiseness uniqueness of
SDE (17).

@ The assumption (Ax) results in

o =inf{se[t,T); X)*¢ D} =inf0 =T
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Initial-Boundary Problem V

@ Then, Theorem 12 gives the stochastic representation of the following
Cauchy problem:

(0 + A+ g)u(t,x) = f(t,x), in(t,x)€[0,T)x D,
u(T,x) = ¢(x), on D. (19)

@ We next summarize the well-posedness of Cauchy problem (19) on
the bounded domain D in the following theorem:
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Initial-Boundary Problem VI

Theorem (Well-posedness of Cauchy Problem on Bounded Domain)

Let (Ap), (Ax) and the following assumptions hold:
(C1): The domain D C R" is bounded.
(C2): The operator A is uniformly elliptic in D.

(C3): f is Hélder continuous in [0, T] x D and g is Hélder continuous on D.

Then, Cauchy problem (19) admits a unique solution u € CY2 such that

u(t,x) = E [ﬂﬁ(x?x)exp (/tTg(Xst’X)dSN

—E [/tT f(s, XE*) exp (/ts g(Xrt’X)dr> ds] . (20)

v
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Cauchy Problems |

@ For D =R", it is not bounded, and hence Theorem 13 fails.

@ In order to study stochastic representation of the Cauchy problem on
R™

(0r + A+ g)u(t,x) = f(t,x), in(t,x)€[0,T)xR"
u(T,x) = ¢(x), on R", (21)

we have to impose the boundedness assumption for the coefficients of
the equation.
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Cauchy Problems Il

@ From Theorem 6.5.3. of Friedman (1975) the well-posedness of
Cauchy problem (21) and its stochastic representation are given by:

Theorem (Well-posedness of Cauchy Problem on R")

Let the following assumptions hold:

(CR1): The operator A is uniformly elliptic, and b, o are bounded, locally
Lipschitz continuous on R"

(CR2): g : R" — R is bounded and is locally Hélder continuous

(CR1): f is continuous in [0, T] x R", Hélder continuous in x uniformly
w.r.t. t € [0, T], and |f(t,x)| < C(1 + |x|P)

(CRphi): ¢ : R" — R is continuous and |p(x)| < C(1 + [x|P) for C,p > 0.

Then, Cauchy problem (21) admits a unique solution u € C1? satisfying
stochastic representation (20), and |u(t,x)| V |Vxu(t,x)] < C(1+ |x|P)

v
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Loealizitn ¢ Feymmen-iee Feimle
Localization Idea |

@ The stochastic representation of the above Cauchy problems is called
Feynman-Kac Formula.

@ However, many financial and physical applications do not satisfy the
very restrictive assumptions imposed by these standard results.

e For instance, for the unbounded domain D, b, may be unbounded
or grow faster than linearly or have unbounded derivatives, etc.

@ Let us introduce a mixed argument of localization and probability
proposed by Health and Schweizer (2000):

JOURNAL ARTICLE
Martingales versus PDEs in Finance:
An Equivalence Result with Examples

David Heath and Martin Schweizer
Journal of Applied Probability
Vol. 37, No. 4 (Dec., 2000), pp. 947-957

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 76 / 291



Localization Idea Il

@ Hereafter, we assume that the domain D C R” is not necessarily
bounded

@ Instead, we make the following assumption on the domain D:

(Ap) There exists a sequence (Dy)x>1 of bounded domains
with C%-boundary and Dy C Ds.t. U2y Dy =D

@ Under assumptions (Ap,) and (Ax), we can have existence and
uniqueness of D-valued strong solution of SDE: Consider the SDE
given by: for (t,x) € [0, T] x D,

S S
D> X =x +/ b(XF*)dr +/ a(XF)dW,, s € [t, T]
t t
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@ For (t,x) € [0, T] x D, we define
T
u(t,x):=E [QS(X?X)exp (/t g(Xﬁ’X)dSN

- E [/tT f(s, X)) exp (/ts g(X,t’X)dr> ds] . (22)

@ We next study the continuity of (t,x) — u(t, x) under some
additional assumptions.
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Feynman-Kac Formula Localization of Feynman-Kac Formula

Localization ldea IV

Lemma (Continuity of (t,x) — u(t, x))

Let (Ap), (Ax) and the following assumption hold:

(HSfgphi) g : D — R is continuous and is bounded from above,
f:[0,T] x D—R and ¢ : D — R are continuous which
satisfy |f(t,x)| V |é(x)| < C(1+ |x|P) for C,p > 0;
(HSXmoment) E[supsc(s, 7] |Xs719] < C(1 + |x|9) for all g > 1.
Then, the function u : [0, T] x D — R defined by (22) is continuous.

@ Proof. Denoted by V; . the term in the expectation of (22). Define
H == {(s,y) € [0, T] x D; |s — t| + |y — x| < ¢} for € > 0. Then,
for k > 1 such that pk > 1, using (HSfgphi) and (HSXmoment),

sup  E[|Vey "] < Cir {1+ E[ sup | XX |PK
(s.y)€EHE st T]

} < G, 7(1+ |xP9)
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Localization ldea V

o This implies that (V; y)(r)ene  is uniformly integrable

o The assumptions (Ap ) and (Ax) yield that (s, t,x) — X< is
P-a.s. continuous. Hence (t,x) — ¢(X3*) is P-a.s. continuous.

o (s,t,x) = g(Xe”) and (s, t,x) — f(s,Xs™) are P-a.s. uniformly
continuous and bounded on any compact set of [0, T] x [0, T] x D.

o Then (t,x) = [, g(X&*)ds and (t,x) — [,] f(s, XE™)ds are P-a.s.
continuous.

@ In summary, (t,x) — Vi x is P-a.s. continuous. Therefore, the
uniform integrability of (V. y)(r,y)ene implies that
(t,x) — u(t,x) = E[V; ] is continuous.

If p =0 in the assumption (HSfgphi) of Lemma 15 (i.e., f, ¢ are all
bounded), then Lemma 15 holds without the assumption (HSXmoment) J

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 80 / 291



Localization ldea VI

@ Based on the continuity of (t,x) — u(t,x), for each k > 1, consider
the initial-boundary problem on [0, T] x Dj:

(0r + A+ g)vk(t,x) = f(t,x), in(t,x) €0, T) x Dy,
vk(T,x) = u(T,x) = ¢(x), on Dy, (23)
vk(t,x) = u(t,x), on [0, T) x dD.

@ As in Theorem 12 with the assumption (Af8), we then assume, for
each kK > 1,
(Ays) (AHSba): The operator A is uniformly elliptic in D,
i.e., thereis a [ > 0 s.t. £€"a(x)& > I|€]? for all
x € Dy and £ € R™;
(AHSfg): g is Holder continuous on Dy and f is
uniformly Hélder continuous on [0, T] x Dx.
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Localization Idea VII

Theorem (General Feynman-Kac Formula)

Let (Aps), (Ax), (Ap), (Aps), (HSfgphi), (HSXmoment) hold. Then,
u(t, x) defined by the stochastic representation (22) is in C1? and satisfies
the Cauchy problem (19), i.e.,

(0r + A+ g)u(t,x) = f(t,x), in(t,x)€[0,T)x D,
u(T,x) = ¢(x), on D.

Moreover, there exists a unique classical solution of Cauchy problem (19).

4

@ Proof. For each k > 1, the assumption (A ) implies that b, a are
Lipschitz continuous on the bounded Dj.

@ The assumptions (HSfgphi) and (HSXmoment) yield that u(t,x) is
continuous on [0, T] x D, U {T} x Dy by Lemma 15 (D, C D).
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Localization of Feynman-Kac Formula
Localization Idea VIII

e Combine above claims and (Ays) to obtain that (Agyg) is satisfied
on [0, T] x Dy

@ Then, Theorem 12 yields that the initial-boundary problem (23)
admits a unique classical solution vj(t, x).

e Now, for any (t,x) € [0, T] x D, the assumption (Ap) implies that
one can find a k > 1 s.t. x € Dy.

o Define o as the exit time of XX from Dy from t before T, i.e.,
ok = inf{s € [t,T); Xe* ¢ Dy} and inf) = T.

o Since the path s — X&™ is continuous, we have

(Uk,Xé;(X) € (0, T) x D U{T} x Dy.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 83 /291



Localization Idea IX

e By Lemma 15, we obtain u(oy, X.*) < co. Therefore, we can also
apply the stochastic representation of vi(t, x) given in Theorem 12,
one has

(tx) = E [ulow Xy exp ([ g1 ) 1,7
H(X7") exp (/tTg(X§7X)dS> 11@:7]
- E { tgk f(s, X2*) exp </ts g(Xrt’X)dr> ds]

u(T2)=¢() ¢ {u(ak,XUt;X)exp (/ ‘ g(Xst’x)ds>]
t

- E [/tgk f(s, XE¥) exp (/ts g(X,t’X)dr> ds] .
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Localization ldea X

@ We next prove that u(t, x) = vk(t,x) if (t,x) € [0, T] x D.
o Since T > oy > t, we get

(X exp ( / Tg(x;*)ds> -/ " (s, Xt e ([ gtxiyar ) o

= exp (/tak g(Xst’X)ds> H(X5*) exp (/UT g(Xg’X)ds>

k

Tk T s
— exp (/ g(X,t’X)dr> / f(s, X2*) exp (/ g(Xrt’X)dr> ds
t Ok Ok
o S
- / ‘ f(s, XE¥) exp </ g(X,t’X)dr) ds.
t t
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Localization ldea Xl

@ This gives that

T T s
E [¢(X7) exp (/ g(Xst’X)ds>—/ (s, X)) exp (/ g(Xrt’X)dr> ds fgk]
= exp (/O—k g(Xsf’X)dS>
T T s
x E | 6(X7") exp </ g(Xf’*)C’S)-/ f(s, X)) exp </ g(Xf’X)dr> ds fakl

- /tak f(s, X57) exp (/tsg(Xf’X)dr> ds. (24)
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@ Using the strong Markov property of X**, we have

T T s
HXE)exp ( / g(X;%) [ rexees ([ eoxar) o

= u(ok, X;LX).

E

f@]

e Taking expectation on both sides of (24), for each kK > 1 and
(t,X) S [07 T] X Dk;

u(t,x) = E [u(ak,x;»;)exp ( /t " g(Xst’X)dsﬂ

—E Uta F(s, X5¥) exp (/t g(X,t’X)dr> ds} = vi(t, x).

e By (Ap) and (23), u(t, x) satisfies Cauchy problem (19)

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 87 / 291



Lezzlizziten o Camen [eE i
Localization Idea XIll|
@ The uniqueness follows from the stochastic representation (22) of
u(t, x) since X** is unique.
@ Thus, we complete the proof of the theorem.

@ Question: This problem is related to an option pricing problem under
stochastic volatility model:

dSt = r5t =+ v/ VtStth, th = CM(/B — Vt)dt —+ o thBt,

where B, W are two Brownian motions with E[W;B;] = pt for
p € (—1,1) and 203 > o2,

@ The P-price at time t of a European put on S with maturity T and
strike K is then

u(t, Se, Vo) = E e o g(50) | FEW) | o) = (K —x)*

@ Prove that u € C12 with D = (0,00)?. How about the case
¢(x) = (x = K)™?
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Course Outline

@ Fokker-Planck-Kolmogorov Equations

@ History of FPK Equations
Feller Semigroup
Forward Kolmogorov Equation
Non-Divergence Form of FPK Equations
Gradient Flow
Expansive Solution of FPK Equations
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History of FPK Equations |

@ The Fokker-Planck equation is the equation governing the time
evolution of the probability density of the Brownian particles.

@ The Fokker-Planck equation is first established by Dutch physicist
Adriaan Fokker and German physicist Max Planck.

@ The Fokker-Planck equation is also known as the forward Kolmogorov
equation, after Andrey Kolmogorov, who independently discovered
the concept in 1931.

@ The Fokker-Planck equation can be also derived from
Chapman-Kolmogorov equation.

@ Andrey Kolmogorov also finds backward Kolmogorov equation using
Chapman-Kolmogorov equation.
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Figure: Left: A. Fokker, Middle: M. Planck, Right: A. Kolmogorov.

@ Adriaan Fokker (1887-1972): Dutch physicist and musician, he was the
inventor of the Fokker organ.

@ Max Planck (1858-1947): German physicist, 1918 Nobel Prize in Physics, he

was the founder of Quantum Mechanics.

@ A. Kolmogorov (1903-1987): Russian Mathematician, he was the founder of
modern probability theory and one of the 20-th century’s most eminent
mathematicians.
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Feller Semigroup |

o Let b:R" — R™1! and o : R" — R™™ satisfy (A);p)

@ Let us consider the following n-dimensional It6 SDE given by
t t
XX = x +/ b(XZ)ds +/ o(XX)dWs, (£x) € R, x R,
0 0

@ Introduce the following spaces:

Let P(S) be the set of Borel probability measures on a topology space S J

If (S, d) is a metric space, denoted by P,(S) be the set of Borel probab.
measures on S with finite p-order moments for p > 1 J

@ Given the solution X* of SDE, define the transition semigroup as: for
any f € B(R"), P:f(x) := E[f(X))],
e B(S) is the set of bounded Borel functions on a topology space S.
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Feller Semigroup Il

Lemma (Feller Semigroup)

Let (Ajip) hold. Then (Pt)¢>o is a Feller semigroup.

@ Proof. For the semigroup property, note that X* is a (strong) Markov
process. Then for s, t > 0,

Psttf(x) = E[f (Xs1e)[Xo = x] = E{E[f(Xs14)[Xo = x, X¢][ Xo = x}
= E{Ex,[f(Xs)]|Xo = x} = E[Psf(X¢)|Xo = x]=P: 0 Psf(x)

i.e., the semigroup property holds Psi+ = P o Ps.

@ For Feller property, let Co(R") be the set of continuous real-valued
functions f on R" satisfying lim, o f(x) = 0.

@ Then, for any f € Co(R"), since x — X is P-a.s. continuous and f
is continuous, we have x — f(X{) is P-a.s. continuous using CMT.
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Feller Semigroup Il

@ Then, BCT yields the continuity of x — P:f(x).
@ Note that, for any R > 0,

|Pef (x)| < EIF(XE — x + X)L xx—x|<R]
+ E[[F(XE = x 4+ x) |1 xx —x|>R]
< sup }|f(2)’ + [[flloc P(IXE = x| > R)

z; |z—x|<R

< sup A2+ IfleRT2E[IXY — x[]
{z; |z—x|<R

< sup [f(2)| + [IflleR2Ce
{z; |z—x|<R}

o By letting x, then R, tend to co, we have lim| |, P:f(x) = 0.
e To this end, for any x € R", t — P:f(x) is also continuous.

o It holds that Af = lim,jo PE=7.
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Forward Kolmogorov Equation |

@ Given a probability measure pg € P(R"), define

pe(dx) = /n E {(5tho(dx)} po(dxp), on B(R")

where § is the Dirac-delta measure and

o B(R") is the Borel-o-algebra, i.e., the o-algebra generated by open sets
of R”,

o C§°(R") is the set of functions f € Co(R") which are also infinitely
differentiable.

e Obviously, 1o = po, pt € P(R") for all t > 0, and for any test
function f € Cg°(R"),

(aesf) = [ FGOmele) = [ Pef(a)po(dso).

@ Let A* be the adjoint operator of the generator A:
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Forward Kolmogorov Equation I

o ie., (A*f,g) 12 = (Ag, f)p2, for f,g € C3(R") N L2(R");
e If b,o are smooth, then

A*f(x) = Z 2 (oo™ )(x)f( Zax,

ij=1

@ We next introduce Fokker-Planck-Kolmogorov (FPK) equation and
the resulting forward Kolmogorov eqaution:
e Start with Itd formula for £(X;°), which yields that

t t
FX) = F(xo) + / AF(X20)ds + / VLX) T o (X20)dW,
0 0
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@ Then, it holds that
[ EFOG o) = [ ETF(xo)ln(cbo)
R" R
+ [ BRG] poldso)os

+/ / [V (o) (XXO)dW}po(dxo)

@ Therefore
[ EIFOGIn(do) = [ ElFGo)lpo(do)
Rn R
+ [ ERArOe)] polds)os
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Fokker-Planck-Kolmogorov Equations Forward Kolmogorov Equation

Forward Kolmogorov Equation IV

Lemma (Forward Kolmogorov Equation)

Let (Ajip) hold. Then, for all f € C§°(R"),

(e 1) = (oo, 1) + [ s, A)ds, 120, (25)

If po(dx) = uo(x)dx, then p:(dx) = p(t,x)dx, where p(t, x) satisfies that

Op(t,x) = A*p(t,x), (t,x) € (0,00) x R, (26)
p(0,x) = up(x), x € R".

o We call (25) a Fokker-Planck-Kolmogorov equation and Eq. (26)
satisfied by the density function is said to be a forward Kolmogorov
equation, which is first established by Fokker and Planck.
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Forward Kolmogorov Equation V
@ Warning: Note that we don’t have the sufficient smoothness of
p(t, x) at the moment, the solution of the forward Kolmogorov

equation (26) should be understood as in the distributional sense: for
all f e Cg°(R™),

(p(t,-),f) = (uo, f) + /0t<p(s,-),Af>ds, t > 0.

o Since (ut, ) = [gn Pef(y)po(dy), if po(dx) = dx,(x)dx, then FPK
equation (25) reads

8tPtf = Pt(Af), Pof == f

@ The word “forward" means that the above equation is obtained by
perturbing the final position, i.e., P:(Af) is the limit of Py( 'Dﬁf Pef=f)
e—0

as
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Forward Kolmogorov Equation VI

@ Question: Prove that (P:f):>0 satisfies the so-called backward
equation 8tPtf = A(Ptf) with Pof =f.

e Transition density function of X*0: Let po(dx) = d,,(x)dx and use
p(t, xo; x) to indicate the dependence of p(t, x) on a given initial
point xp € R".

@ Then P(X{® € dx) = p(t, xo; x)dx. By Lemma 18, the transition
density function p(t, xp; x) obeys that

atp(t)XO;X) = A*P(t,Xo;X), (t’X) € (07 OO) X Rn; (27)
p(0, x0; x) = dx,(x), x €R".
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Forward Kolmogorov Equation VII

e If (b, o) are smooth, we can expect to have a classical solution for
Eq. (27). Typically, when X** = x5 + W is an n-dimensional
Brownain motion starting at xo € R” (i.e., b =0 and o = Ipxn), then

1
A=A =ZA.

@ Therefore, the forward equation (27) admits the classical solution
(Einstein (1905)): for (t,x) € (0,00) x R",

1 Ix — xo?

p(t, xo; x) = Wexp < 2t> ;

p(0, x0; X) = 0x,(x), x €R".
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Forward Kolmogorov Equation VIII

@ The above p(t, xp; x) is also called a fundamental solution and this
yields that, Browanin Feller semigroup

P:f(x0) :/ f(x)p(t,x0; x)dx, xo € R.
Rn
@ Question: Let X* be a OU process, i.e., for (t,x) € (0,00) x R,
t
X5 =x+ / a(B — X)ds + oW,
0

where a,0 > 0, 8 € R, and W is a scalar Brownian motion. Solve
the forward Kolmogorov (26).
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Non-Divergence Form of FPK Equations
Non-Divergence Form of FPK Equation |

@ Recall the adjoint operator given by, for f € C5°(R"),

Z XiX;j aU(X ZBX: l (28)

ij=1

@ Let us assume that (b, o) is sufficiently smooth. Then
@ Subtract the coefficients of Oy, f and 8)2(1,’)9,7‘ from A*f, define

= (Z 8Xja,-j(x)) —bi(x), i=1,...,m
Z x,xJaU Zaxibi(x)'
i=1

I,jl
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Non-Divergence Form of FPK Equation Il

@ Therefore, it holds that

n n

A*f(x) = % Z a,-j(x)Ofl_Xjf(x) + Z bi(x)0x f(x) + g(x)f(x).

ij=1 i=1
@ Then, the forward Kolmogorov equation (26) can be written as in:

The Non-Divergence Form: for (t,x) € (0,00) x R”,

Dep(t, x) = % Y ai(x)85p(t,x) + D bi(x)dxp(t, x) + g(x)p(t, ),
ij=1 i—1
p(0,x) = up(x), x€R". (29)

v

@ The forward equation with non-divergence form becomes a Cauchy
problem which has been discussed in detail in Section of
Feynman-Kac Formula.
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@ In particular, we can refer to Chapter 4 of Friedman (1975) for a
general result on the fundamental solution of the uniformly elliptic
version of Cauchy problem (29).

Assumptions:
(A1) The adjoint operator A* is uniformly elliptic on R".
(A2) The coefficients a, b, g are bounded and continuous functions in R".

(A3) The coefficient a is Holder continuous (exponent a € (0,1]) w.r.t. x € R”,
and b, g are Holder continuous (exponent a € (0, 1]) uniformly w.r.t. x in
compact sets of R”.
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Non-Divergence Form of FPK Equation IV

Lemma (Theorem 1.4.2 in Friedman (1964))

Let (A1)-(A3) hold. Then, there exists a fundamental solution

G(to, t; x0, X) (to < t) of Cauchy problem (29) satisfying, for all
f e Co(Rn),

+G(to, t; x0, x) = A" G(to, t; x0,x), ifxeER" th<t<T;

/ G Z‘o, t; Xo, X f(Xo)dXQ — f(X), tl to.

Moreover, for k = (ki,...,kn) € N" with0 < |k| < p and p > 1,

[k
’VfﬁG(to,t;xo,x)‘ < C|t—to|” 2 exp

1
_ ’X—Xo‘zp 2p—1
t— 1t

I —|
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Non-Divergence Form of FPK Equation V

@ However, we don't like the boundedness constraint of a,b on R” in
the assumption (A2).

@ We can apply Theorem 16 with only local condition of coefficients to
Cauchy problem (29). See the following example:

Example: Consider OU process, i.e., m=n=1, b(x) = a8 — x), a > 0,
and o(x) =0 >0 for x ¢ R. Then b= —af + ax and g(x) = —a. Thus,
the forward equation with non-divergence form is given by

Orp(t, x) = U;Axp(t,x) + a(x — B)oxp(t,x) — ap(t,x),
Po(x) = uo(x). (30)

v

e Note that D = R = U2, Dy with Dy := (—k, k) with smooth corners.
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@ Then, the coefficients a, b, g satisfy the assumption in Theorem 16.
By Theorem 16, if for some p > 0,

(Aphi): up : R — R is continuous and it satisfies
lug(x)] < C(1+|x|P), x€eR,

e then Cauchy problem (30) has a unique classical solution.

@ In fact, from our previous discussion, the fundamental solution of
Cauchy problem (30) admits a closed-form representation.

@ Question: Discuss the well-posedness of the forward equation with
non-divergence form for Geometric Brownian Motion.
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History of Gradient Flows |

@ On May 3, 1941, Richard Courant gave an address to the AMS in
which he proposed three methods for numerically solving variational
PDEs.

o Finite Element Method: Finite Difference Method; Gradient Method

e Richard Courant (1888-1972): German-born American mathematician
and educator who made significant advances in the calculus of
variations.

@ Courant established one of America’s most prestigious institutes of
applied mathematics; upon his retirement the institute was named in
his honour.

@ Courant also wrote a two-volume elementary work on applied
calculus, Differential and Integral Calculus (1934; originally published
in German, 1927-29), and, with H. Robbins, a general work for the
layperson, What Is Mathematics? (1941).
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History of Gradient Flows Il

Figure: Richard Courant (1888-1972)
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History of Gradient Flows Il

@ The idea arose in the study of variational PDEs. Each of these
equations has a function V : R” — R s.t. a solution of the equation
is a minimizer of V.

@ The method of gradients starts with an initial point xp € R”, and
seeks to find a minimizer of V' by following a curve X*® defined by
ODE:

dX® = —-VV(X{°)dt, X° = xo.

@ It describes that the curve X* : [0, T] — R" evolves in the direction
of steepest decent of the energy V.

Example: The energy functional V/(x) = %[x|? for & > 0 and x € R".
Then, the gradient flow X;® = xpe™“! is the unique solution of the
gradient flow.

@ The solution X*® is called an integral curve or gradient flow.
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History of Gradient Flows IV

e Critical Point x* of V: if VV(x*) = 0.

If the curve X;° is not a critical point of V, then X;° has the desirable
property that V' is always decreasing along it:

d dx®

el X0\ X0 _ X0 2<
SVOGR) = V) S = - [TVOR)P <.

@ In addition, X*® has the desirable property that for a large class of
functions it connects the initial point xg to a critical point of V:

If V:R" — R satisfies Palais-Smale condition, and is smooth, Lipschitz
continuously differentiable, bounded from below, and has isolated critical
points. Then, lim;_.o, X;° exists and which is a critical point of V.
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History of Gradient Flows V

o Palais-Smale condition satisfied by V: any subset D C R" on which
V is bounded and on which VV is not bounded away from zero
contains in its closure a critical point of V.

@ An example of a function that does not satisfy Palais-Smale
condition: V(x) = e * for x € R. On D = [0,00), V is bounded and
|IVV(x)| = e * is not bounded away from zero, but V has no critical
point on R.

@ In the aspect of the forward Kolmogorov equation, the “random
version" of gradient flows result in a class of important FPK
equations.
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Gradient Flow |

o It is well-known that the generator A = %A of Brownian motion is
self-adjoint in L?(IR™), since Brownian motion is a reversible Markov

process.

@ We expect to find the class of It6 diffusion process whose generator is
self-adjoint in a right space.

o Let V:R"™ — R be a smooth function. Consider the following It6
diffusion process given by, for xp € R”,

t
X = xo 7/ VV(X2)ds + V2o Ws, t>0 (31)
0

where ¢ > 0 and V = V is the gradient operator.
o If 0 =0, dX{® = —VV(X{°)dt corresponds to the deterministic
gradient flow for a curve X : [0, T] — R".
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Gradient Flow I

o Vs in general called a potential or an energy. Note that V(x) =
for x € R corresponds to Langevin equation.

OéX2

2

@ The generator of X;© is given by

Af(x) = =VV(x) - Vf(x) + o Af(x)

@ The stochastic gradient flow (31) admits a unique invariant measure:

Lemma (Gibbs distribution)
Let e=V()/7 ¢ [Y(R"). Then, the stochastic gradient flow (31) has a

unique invariant density given by

1 ) )
m(x) = Fefvu , xeR", T:= /" e~ dx.

(32)

@ The density function m(x) given by (32) is called Gibbs distribution.
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Gradient Flow Il1

@ Proof. It is straightforward to verify [p.(Af(x))m(x)dx = 0 for all
f € D(A) (D(A) = C3(R™)). This yields that
/ (~VV()VF(x) + 0AF())m(x)dx = 0 (33)
4
Rn{(fv V(x)Vf(x))n(x) —oVf(x)Vr(x)}dx =0  (34)

@ For the uniqueness, the ergodic theory of Markov processes can be
used.

@ We next discuss the role of Gibbs distribution played in the study of
forward Kolmogorov equations.
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Gradient Flow IV

e By (28), the adjoint operator of A is given by

AF(x) = 3 0 (0 V)P (x)) + o AF(x)
i=1

n n

=f(x)D_RV(x)+ D 05 V(x)0gf(x) + cAF(x)
i=1 i=1

= f(x)AV(x) +2VV(x) - Vf(x)
—VV(x) - Vf(x)+ ocAf(x)-Non-Divergence
—Af(x)
=V - (VV)(x)f(x)) + o Af(x). (35)

@ The forward Kolmogorov equation becomes that, for p := p(t, x),

dep=V-((VV)p)+0oAp, po=ug (36)
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Gradient Flow V

@ We can implement a transform using Gibbs distribution for the
solution of the forward Kolmogorov equation. After this transform,
the resulting equation is the backward Kolmogorov equation:

Define q(t, x) := m(x)~1p(t, x). Then, g satisfies the following backward
Kolmogorov equation given by, for (t,x) € (0,00) x R",

up(x)
m(x)

drq(t, x) = Aq(t,x), q(0,x) = x € R". (37)

@ We will leave the verification of the backward Kolmogorov equation
(37) to a Question.

@ Consequently, in order to study properties of solutions to the forward
equation, it is sufficient to study the backward equation (37).
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Gradient Flow VI

e Since A*f = Af + fAV +2VfVV, A'is not self-adjoint in L2(R").
Even if A is not self-adjoint in L2(R"), we can find a right space
under which A is self-adjoint using Gibbs distribution.

@ The right space is the following weight L2-space as follows:
[2(R") := {¢> ‘R" > R; / |p(x)[2m(x)dx < oo}
Rn
e L2(R™) is a Hilbert space with inner product

(g, $)n = /1R g(x)6()m(x)dx.
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Gradient Flow VII

@ The following lemma proves that A is indeed self-adjoint in L2(RR™).

Lemma (Self-Adjoint in L2(R"))

Let e=VO)/7 ¢ [H(R"). Then, A= —VV -V + A is self-adjoint in
L2(R") and satisfies

(i) (Af,g)r = —0(VFf,Vg), forall f,g € CZ(R");
(i) A is negative.

@ Proof. It is suffices to verify (i), which can be derived directly from
A=-VV .-V +oA. By (34), we have

(AFf,g)p = /R (V- VF(x) + o AF(x)a(x)m(x)dx
= /R (V- VA ))m(x)g(x)dx + o /R AF()g(x)(x)dx
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Fokker-Planck-Kolmogorov Equations Gradient Flow

Gradient Flow VIII

= /n(—VV - Vi (x))m(x)g(x)dx — o . VI(x)V(g(x)m(x))dx

= Rn{(fvv -Vf(x))m(x) — oVF(x)Vr(x)}g(x)dx —o(VF,Vg),

=0 using (34)
= —o(VF,Vg)r=(Af, g}y = =0 (NVFf,Vg)r = (Ag, ).

e By (i), (Af,f)r = —0||Vf||2 < 0 since o > 0, which yields (ii).
@ Thus, we complete the proof of the lemma.

@ In the context of Markov processes, (—Af, f), is called Dirichlet
Form.

@ We next show that the solution of the forward Kolmogorov equation
converges to Gibbs distribution exponentially fast:
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Fokker-Planck-Kolmogorov Equations Gradient Flow

Gradient Flow IX

@ The main tools are the following Poincare inequality and the
backward Kolmogorov equation (37).

Assume that the potential V' additionally satisfies /-convexity condition:
there exists £ > 0 s.t. V2V/(x) > ¢/ for all x € R". If g € C}(R") satisfies
(g.1)x =0, then |Ig]|7 < ¢~ Vg]f3.

@ Now, assume that the initial density up of the forward Kolmogorov
equation satisfies up /7 € L2(R").

Theorem (Large Time behavior Solution of Forward Kolmogorov Equation)

For any t > 0, it holds that

p(t,) = (Yl pmr < e fluo() = 7 ()l -
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Fokker-Planck-Kolmogorov Equations Gradient Flow

Gradient Flow X

@ Proof. Recall g(t,x) = m(x)~!p(t, x) which satisfies the backward
Kolmogorov equation (37).

@ Then, using Lemma 21, we have

() = w20 = [ lale.x) - 1Pax)dx = lae, ) - 12

@ In order to apply the above Poincare inequality, we need to verify
Jzn(q(t,x) — 1)m(x)dx =0 for all t > 0.

@ In fact, we get
Ot </]R" q(t,x)w(x)dx) = /]R" Orq(t, x)m(x)dx
= [ Ad(t.0m(x)dx = (Aq(z, ). 1)

D 5vg(t,), V1), = 0.
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Fokker-Planck-Kolmogorov Equations Gradient Flow

Gradient Flow Xl

e Note that [, q(0, x)7(x)dx = [p» uo(x)dx = 1.

@ Taking derivative on both sides of the above equality w.r.t. t, we have

ath(tv ) - 1”72r =2 <8fq(t7 ')7 q(t7 ) - 1>7r

@ As a summary

D2 (Aq(t, ), q(t,) — 1),

=02 (A(g(t, ) — 1), q(t,-) — 1),
9 _o5|v(q(t,-) - 1|2
Poincare

< —20f|q(t,") - 1.

Oellp(t,-) = m()z-2 < —20¢]lq(t,-) — 1|13
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Expansive Solution of FPK Equation |

@ Let V:R" — R be a smooth potential satisfying
o e V07 ¢ [I(R);
o V2V(x) >/l for all x € R™.
@ Then, by Lemma 21, for the operator A = —VV -V 4+ g/, we have

(i) A is a negative and self-adjoint operator on L2(R");
(i) For g € CY(R") with (g,1), = 0, a spectral gap is given by

I(Ag. &) 117 = —ol|Vellz < —otliglz-
@ The spectral problem of —A is as follows:
_Agk:)\kgka k20717"'7

@ The operator —A admits real, discrete spectrum satisfying
0:)\0<)\1</\2<"';
@ The eigenfunctions (gk)k>o form an orthonormal basis in L2(R").
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Expansive Solution of FPK Equation Il

e This implies that for any ¢ € L2(R"),

O=> ox8ks bk = {08k (38)

k=0

@ We seek the solution g(t,x) = m(x)~!p(t, x) of the backward
Kolmogorov equation (37) in the following form:

atx) =3 qe(t)en).
k=0
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Expansive Solution of FPK Equation Il

@ Plugging the above g(t, x) into the backward Kolmogorov equation
(37), we get

deq(t, x) = Zﬁtqk(t)gk(x qu )Agi(x

=— Z qr(t) A kgr(x

@ Therefore, for j > 0,
li&t%(t) (/Rn gk(x)gj(x)n(x)dx>
= _ liAqu(t) (/Rn gk(x)gj(x)n(x)dx) )
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Expansive Solution of FPK Equations
Expansive Solution of FPK Equation IV

@ As a summary, for j > 0,

Zatqk t)(8k, &j)r ZAqu (&, &)
k=0

@ We then conclude the equations
9eq;(t) = —Njqi(t), j=0,1,....

@ Assume that q(0,x) = % € L2(R").
@ Then, by (38), we get

x) = i lokgk(x), ok = (q(0,"), gk)x- (39)
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Expansive Solution of FPK Equations
Expansive Solution of FPK Equation V

@ Thus, we obtain

9eqj(t) = =Ajqi(t),  qi(0) =hj, j=0.1,.... (40)
@ The solution of (40) is given by, for t > 0,

qo(t) =lo=1, qt)=1lye N, j=12,.... (41)

@ Therefore, the solution of the backward Kolmogorov equation is as
follows:

W(x)_lp(t,x) =q(t,x) =1+ i Ioje_’\ftgj(x)
j=1

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 129 / 291



Expansive Solution of FPK Equations
Expansive Solution of FPK Equation VI

@ Then, the forward Kolmogorov equation (36) admits the following
expansive form:

p(t,x) = m(x) + 7(x 1—1—2/01 Ntgi(x) | . (42)
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FPK Equations and Particle System |

@ In the previous Chapter: FPK Equations, an important problem which
is not discussed is the uniqueness of solutions of FPK equation. This
issue can be studied by the approach of Martingale Problem.

@ We here introduce the method of Propagation of Chaos on FPK
equation. This in particularly implies the uniqueness of the FPK
equation.

@ Propagation of chaos is in fact establishing the convergence of the
empirical measure of a particle system to the solution to a nonlinear
equation, was first formulated by Kac (1956):

o Kac (1956): Foundations of Kinetic Theory. In Proceedings of the
Third Berkeley Symposium on Mathematical Stats. and Probab.,
1954-1955, vol. Ill, pages 171-197. University of California Press,
Berkeley and Los Angeles.

o Kac (1956) studies the convergence of a toy particle system as a step
to the rigorous derivation of the Boltzmann equation.
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FPK Equations and Particle System Il

o Let us start with a review of the FPK equation discussed in Chapter:
FPK Equations, which is given by (25) in Lemma 18, i.e., for all
f e C°(R"),

(e 1) = (oo 1) + [ Guss ARG, € [0,T]

where pg € P(R"), and T > 0 is an arbitrary time horizon.

@ The operator A is the second-order differential operator
corresponding to the generator of the following It6 diffusion process
given by, for (t,x) € [0, T] x R”,

t t
X :x+/ b(x;)ds+/ (X)W, .
0 0
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FPK Equations and Particle System IlI

@ As it is proved in Lemma 18, the following probability measure valued
function (11¢)¢epo, 77 is a solution of FPK equation (25):

je(dx) = / CE [y0(d)] poldxo). on BR").  (43)

o If the uniqueness holds, then the solution of FPK equation (25) must
be form (43).

Propagation of Chaos: Establish a particle system which includes N
particles. For i =1,..., N, the state (e.g. position, velocity and so on)
process of the i-th particle is given by a process (Xti)te[O,T]- Define the
empirical measure-valued process as il := & SN dx; for t € [0, T]. For
an arbitrary solution p = (j1¢)¢efo, 7] of FPK equation (25), find an
increasing function v : Ry — R with (0) =0 s.t.

dr(uM, ) < a(N~1), where dr(-,-) is a suitable metric.

4
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FPK Equations and Particle System IV

If the propagation of chaos is established, then for any two different
solutions = (pt)tepo, 77 and v = (vt)eepo, 1] of FPK equation (25),
we have limpy_oo ,uN = p and limpy_ uN =v w.r.t. dr.

Then d(u,v) < d(uN, u) + d(uV,v) — 0 as N — oo, this yields that
= v, i.e., uniqueness holds.

We next construct a (homogeneous) particle system required in the
propagation of chaos.

Let the number of particles be N > 1. For i =1,..., N, the dynamics
of the state of the j-th particle is given by

dX{ = b(X)dt + a(X)AW,. X§ € R, (44)

Here W' = (W/)epo 7y, i =1,..., N and W = (W})seo, 17 are
independent (m-dimensional) Brownian motions under the filtered
probability space (2, F,F, P).
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FPK Equations and Particle System V
e The initial values (X{});>1 is assumed to satisfy that

(A)x; Let g > 2. The sequence of r.v.s (X§)i>1 is i.i.d. according to the
probability distribution pg € P,(R") for some p > q.

e Equip P,(R") with Wasserstein distance W: for p,v € Pp,

1

P
nf [ xeyPr(ddn)) s 21
meM(p,v) JRM xRN

inf / |x — y|Pm(dx, dy), 0O<p<l,
weM(p,v) JRM xRN

WP(M? V) =

where M(y, v) is the set of 7 € P(R?") s.t. (A x R") = u(A) and
7(R” x B) = v(B) for all A, B € B(R").

@ Then, by Villani (2003), (P,(R"),W),) is a Polish space since
(R™,]-|) is Polish.
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FPK Equations and Particle System VI

@ As is well-known, under the assumption (A)Xé, by Glivenko-Cantelli's

theorem, the empirical measure y)) = % Z,Nzl 5X(§ tends weakly to pg
as N — oo.

@ Moreover, Theorem 1 in Fournier and Guillin (2015) yields that, there
is a constant C depending only on n, p, g such that

q

E Wil o)?] < € ([ 1xPoo@0)) alpean ). (45)

Probab. Theory Relat. Fields (2015) 162:707-738
DOI 10.1007/500440-014-0583-7

On the rate of convergence in Wasserstein distance
of the empirical measure

Nicolas Fournier - Arnaud Guillin
Figure: A reference paper by Fournier and Guillin (2015)
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FPK Equations and Particle System VII

@ The main convergence rate a(p, g, n, N) is given by

N2 4N 7 q>73, p#2q

a(Paq7”, N) = N*%In(l—i—N)—i—N*?, q:g7 p;éQq,
9 _P—qa

N~ +N"°, 9<3, P# 5

@ We next establish the propagation of chaos by introducing a so-called
propagator corresponding to FPK equation (25).
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Propagator of FPK Equation |

e The propagator of FPK equation (25) is defined as: for
(t,x) € [0, T] x R",

T
PEro(x):=E [é(X%X) exp ( /t g(X;’X)ds>] . (46)
@ The process (Xs™)se[e, 7] satisfies: for (t,x) € [0, T] x R”,
S S
X =xt [ bOXEdr+ [T a(Xi)dWs, s e, T
t t

o Question: Verify that (P§ +)7>0 is a semigroup. Provide conditions
under which (Pg,-r)Tzo is a Feller semigroup.

@ The propagator (46) is the same to the representation of u(t, x) in
(22) with f = 0.
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Propagator of FPK Equation I

@ Then, we can apply Theorem 16 [General Feynman-Kac Formula] to
study the smoothness of the propagator (t,x) — P 7¢(x).
@ To this purpose, we review the assumptions imposed in Theorem 16
(with D =R"):
(HSfgphi) g :R" — R is continuous and is bounded from above,
¢ : R" — R are continuous which satisfying
lp(x)] < C(1+ |x|P) for C,p > 0;
(HSXmoment) E[supgee 77 1Xs™|9] < C|x| for all g > 1.
e If p =0 in (HSfgphi), then we don't need (HSXmoment).
@ Under the assumption (A/j), we also review
(Ans) (AHSba): The operator A is uniformly elliptic in
Dy = (—k, k)", i.e., there is a [y > 0 s.t.
ETa(x)¢ > Ik|€|? for all x € Dy and € € R”;
(AHSfg): g is Holder continuous on Dy.
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Propagator of FPK Equation IlI

@ Then, Theorem 16 gives the smoothness of the propagator of PthQS:

Lemma (Smoothness of Propagator)

Under the above assumptions, the propagator of P-¢(-) € C12, and it
also satisfies the following Cauchy problem:

(0c + A+ g)Pird(x) =0, (t,x)€[0,T)xR",
Pé-;’-,-gb(x) =¢(x), xeR" (47)

v

@ Proof. The proof follows completely by verifying the assumptions
imposed in Theorem 16.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 141 / 291



Propagator of FPK Equation IV

@ We can also have the estimate of the gradient V, P; 7¢ under the
additional assumption on the Lipschitz-continuity of g:

Lemma (Gradient Estimate of Propagator)

Assume additionally that g : R" — R is Lipschitz continuous. Then, there
exists a positive constant Ky, , T depending only on T and the Lipschitz
coefficient b, o s.t., for all ¢ € Lip(R") with ||¢|ec 1= sup,ern |¢(x)| < C,

|ViPEro| < Koor, Veelo Tl (48)

v

@ Proof. Note that the Lipschitzian property of g, g is bounded from
above and ||¢]|o < 1.

e W.L.O.G. let g(x) <0 for all x € R".
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@ Then, for all x;,x € R”,

:

PE 1+d(x1) — P§ 16(x2)

.,
|6(XE) — G(XE)|* exp (2 /t g(Xi’X)dSN

T T 2
exp ( / g(Xst’Xl)d5> —exp ( / g(XJ’XZ)dS>‘
t t
T 2
/ Xt - x| ds].
t

<2E

+2E |[o(Xe)[?

X X 2
< 2i6lunE || X5 = X[°] +8TC g,
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e By the assumption (Ajj,) gives that

E[ sup |X&™ —Xst’X2|2 < |x—xf

selt, T

T 2
-+ C,,,U,T/ E [[XE — Xt ] ds.
t
@ Then, the Gronwall's lemma vyields that

E [ sup | X5 — X;7X2|2 < |x1 — xp|2elT =8 CooT

s€(t,T]
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Propagator of FPK Equation VII

o It follows from (49) and (50) that, for all x;, x> € R",

2
|PEro(x1) = PEro()|
<2 (llollup +4T2CgllEsp) €T %o Tha =02 (51)
@ Since P. 7¢ is the classical solution of Cauchy problem (47), we have
P-,T¢ e Cl2
@ Then, the estimate (51) yields that the gradient estimate (48) by
taking Koo, 7 := 1/2(|llLip + 4T2C2| g7, )e 7.

@ Thus, we complete the proof of the lemma.

e What is the role of the propagator P ¢ in the construction of the
propagation of chaos?
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@ We in fact have the following important observation on the relation
between ; and P? +¢ (when g = 0) given as follows:

An important observation (the proof is non-trivial): for all ¢ : R” — R
satisfying (HSfgphi), it follows from (47) that

Or (put P?,T¢> = (Orput, P?,T¢> + <,UtaatP?,T¢>
= (pe, AP 16) + (MtaarP?,T@
= (e, (0 + A)PL 1) = 0. (52)

v

@ This yields that

<Htv P?,T¢> = <,00, P(()),T¢>v Vite [07 T]' (53)
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Propagator of FPK Equation IX

@ The propagator P2T¢ establishes the following relation satisfied by
p# — pt for any fixed T > 0:

Theorem (Decomposition of (u} — 7, #))

Let the above assumptions gold. Then, for any fixed T > 0, and all
¢ : R" — R satisfying (HSfgphi),

(W = pr,d) = (g — po, Po.79) (54)

+ z/wgm D)o)W,

v

@ Proof. Recall the state process of the particle system X' = (Xti)tG[O 7]
defined by (44) for i > 1.
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e Lemma 27 allows us to apply Itd's formula to Pt +¢(X{), and we have
that, for t € [0, T],

. . t .
PRro(X) = PRro(X) + [ (0: + AP ro(xD)ds
t ) . .
+ [ VPR ro(x) T o (X)WL
0

o Note that (9; + A)P? ¢ = 0, therefore

N
Z ZP0T¢X0

i=1

+ = Z/ VP ) o (XHdW,.
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Propagator of FPK Equation Xl

o Recall that ulY := % SN, Oxi- Then, we have
N pO0 i
(ul, P2 ) = (b, PG.70) + Nz/ VP2 ro(X) o (X)W,

e By (53), i.e., (i, P?’T@ = (po, P&-,-qb) for all t € [0, T].
{ue's Pr9) = (e, PEro) = (o' PO.T6) = (oo, Po.70)

1 gt : ; ;
+ 30 [ VAP0 o (X)W,
i=170

e By taking t = T and note that P0T7Tq5 = ¢, we have (94).

@ Thus we complete the proof of the theorem.
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Distance for Measure-Valued Processes
Metric between p" and 1 |

@ For p > 1, recall that W, is Wasserstein metric with p-order on
Pp(R™).

e For g > 2, define S, 4.7 as the set of P(IR")-valued processes
v = (Vt)eefo,1] such that

E[ sup (/ |x]p1/t(dx)>p
te[0,T] \JR"

@ For p>1 and g > 2, introduce the metric on S, , 7 as follows: for
all 1,02 € Sp.q, T

< 0.

1

dp.q.7(V1,10) = {E l sup W, (ut,ut)q] }q : (55)

tel0,T]
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Distance for Measure-Valued Processes
Metric between p" and p Il

@ Consider p = 1 and using the Kantorovich-Rubinstein dual formula
(see Villani (2003)),

1

q

di,q,7(v1,10) = {E [ sup Wl(l/gﬂf?)q]} (56)
te[0,T]

1

9N @
= {E [ sup (sup (x) (I/tl(dx) - Vf(dX))) ] }
te[0,T] \peR1 /R"

where R is the set of Lipschitz functions ¢ : R” — R with the
Lipschitz coefficient

609~ o)l _

[¢llLip ;= sup
x,yERM x#£y ‘X - )/|
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Distance for Measure-Valued Processes
Metric between p"N and g Il

o In the metric (56), R1 can be replaced with R? which is the set of
bounded functions ¢ € Rq, see Villani (2003).
@ We can further reduces the set Ry in the metric di ¢ 7 to the set

Rf’l which is the set of Lipschitz functions ¢ : R” — R with
|llLip + [|¢]loo < 1. In other words, we have non-decreasing sets:

R C RE C Ry

@ The metric d; 4 7 with R; replaced by Rll”l becomes that

de 1(v1,12) (57)
7Y 5

=< E | sup sup /n o(x) (th(dx) - l/f(dx))

b,1
te[0,T] PER?

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 152 / 291



Distance for Measure-Valued Processes
Metric between p" and o IV

@ The distance dEIJ,T is called Fortet-Mourier distance (see Section
11.2 of Dudley (2004), page 390).

® Then (S1,4,7,dP; 1) is a complete metric space.

@ We next introduce a weaker metric.

@ As in Lucon and Stannat (2014) AAP, we establish a metric dg T
between 1 = (1ie)cpo, 7y and 1V = (u)ecio 1) s

da,7(1,v") == sup dpr(pe, ut'). (58)
tel0,T]

@ dp is a metric for P(R")-valued r.v.s, which is defined as

det(pe,ut) = sup E || [ 90x)(pe — pe')(dx)

PERD?

q] © s9)

Rn
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Propagation of Chaos Distance for Measure-Valued Processes

Metric between p" and ;o V

@ Here, we work with the construction of the propagation of chaos
under the distance dg 1 defined by (57).

Theorem (Propagation of Chaos)

Recall the assumption (A) X with additional assumptions discussed in this
chapter. Then, for any T > °0 and N > 1, there exists a constant C > 0
which is independent of N such that

q
B 1
dq,T(u,uN)SCK [ xPon()” (e . W) + g |- 9> 2
D

where the first convergence rate a(p, q, n, N) is given by (45).
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Distance for Measure-Valued Processes
Metric between 1N and 1 VI

@ Proof. Using (94), it results in, for all ¢ € Rf’l,
<MI')I'_MT7¢> :< N_,U’07P8T¢>

% Z/ VAP ro(XD) (X)WL (60)
o Let ¢ := KE;,TP((J),T¢- Then, by applying the estimate (48) in

Lemma 24, we obtain that ||¢ol|rip < 1.

@ Then, it follows from Kantorovich-Rubinstein dual formula that, for
q>2,

E[|(ub = 10, P8.76)|"| = Koo, 7E [|(1sd! = 110, 00)]"]
< Kb, TE [Wl(/ﬁ()\lapo)q} < Kb TE [Wq(,u(l)v,ﬂo)q} :
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Distance for Measure-Valued Processes
Metric between p"V and p VII

@ By the convergence rate estimate (45) under the assumption (A)ng
it holds that

q
E H<IU’6V — Ko, P8,T¢>’ :| < Kb,a,TE [Wq(l‘bévaPO)q}
q
< Kpo1C (/D |X|p,00(dx)> ? a(p,q,n, N).

@ Here, the constant C > 0 which is independent of N is given in (45).
@ We next estimate the 2nd term of the r.h.s. of the equality (60).
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Distance for Measure-Valued Processes
Metric between p"N and g VIII

@ Using the estimate (48) in Lemma 24, the BDG inequality yields that,
for g > 2,

18 / PR o) X)W,

o N
(/0 VP2 o (x0)[|o

[ T 0 2 o2
/O HVXPS,TQZ)HOO }U(Xs) d
Cq,T ﬂfl_q T 1 N ivig

< yai!? Koot /0 E N;!ff(xs)\ ds|. (61)

sup
[tE[O T]
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Distance for Measure-Valued Processes
Metric between 1" and p IX

@ Using the assumption (Aj;,) and (A)ng we have

N
sup E[ Z\a |q] <CT{1+ sup EHZWWH
i=1

te[0,T] t€[0,T]

XLiid o {1 + sup E[IX}|7] }

te[0,T]

< 00.

@ Thus, we complete the proof of the theorem.
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Distance for Measure-Valued Processes
Metric between p"N and i X

@ Question: Let us assume that o(x) = o € R™™. At the moment,
can you relax the assumption (Aj;,) on the coefficient b so that the
propagation of chaos still holds? For instant, when b satisfies the
so-called one-sided Lipschitz condition, i.e.,

(x1 — XQ)T(b(X]_) — b(x2)) < L|x1 — x2|2, x1,x € R", (62)

where the coefficient L € R.

@ Hints: One of main argument is to establish a sequence of functions
(bn)n>1 which have the same regularity to that of b such that b, — b
as n — oo in some sense. The key point is to find a constant C > 0
independent of n s.t.

dg, (""", u") < Ca(1/N).
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McKean-Vlasov Equation |

@ Let us introduce the following particle system with mean field: for
i=1,...,N,

dXi = b(X., X)dt + o (X, X0)dW{, X, eR" (63)
@ The random variables Xé, i>1, arei.i.d. with common law

po € P(R").

@ The mean-field term is defined as
_ 1N .
X1 =53 o), (64)
i=1
where p : R” — R is a Lipschitz function.
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McKean-Vlasov Equation I

@ The empirical measure-valued process related to the particle system
(63) is defined as:

Zéx' on B(R").

@ Then, the state process of particle system (X');>1 can be rewritten as:
dX{ = b(X{, (i’ p))dt + o (X, (uf', p))dW,, X5 eR".  (65)

@ Question: Let the coefficients (b, o, p) satisfy the assumption
(Apsp) b R"XR =R, 0:R" xR —=R™ and p:R" - R
are Lipschitz continuous with linear growth, i.e.,
|b(x, z)| V|o(x,z)| V |p(x)| < C(1+ |x]) for all
(x,z) e R" x R.
Prove that the system (65) admits a unique strong solution.
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McKean-Vlasov Equation Il

o What is the limit of uV = (,u,’_y)teloﬂ as N — oco?

@ In order to address this issue, we follow the similar argument to that
used in the derivation of the forward Kolmogorov equation.

e To this purpose, define the operator as: for (x,u) € R"” x P1(R"),
and f € C3(R"),
AF(x) 5= b, (1, 00) V() + Stlo (i p)) V3] (66)
e For any f € C2(R"), we have from It6 formula that
oy = )+ [l 4 s

1t ; ; ;
+ 530 [ VAT o (x)aw
Ni= /o
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McKean-Vlasov Equation IV

e Formally, using Martingale Convergence Theorem, a.s, N — oo,

—Z/Vf To(XDHdWi — 0

@ Then, we have as N — oo,

The McKean-Vlasov equation:

(s F) = G, ) + [ (s, AeF)s, £ €00, T (67)

o A little bit of history:
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McKean-Vlasov Equation V

\e“
- —

(a) Mark Kac (b) Anatoly Vlasov

@ The story of these processes started with a stochastic toy model for
the Vlasov equation of plasma proposed by Mark Kac in his paper
“Foundations of kinetic theory (1956)".
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McKean-Vlasov Equation VI

Figure: Henry P. McKean (1930-)

@ In 1966, Henry P. McKean published his seminal paper “A class of
Markov processes associated with non-linear parabolic equations".
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McKean-Vlasov Equation VII

@ We have two issues which should be addressed:

(Q1) Well-posedness of the McKean-Valsov equation (67).
(Q2) Propagation of Chaos of the McKean-Valsov equation (67).

@ We can apply the similar argument to that in the study of the
propagation of chaos of FPK equations.

@ Recall (55), (56) and (57) in the previous section:

@ For p>1 and g > 2, introduce the metric on S, , 7 as follows: for
all 1,12 €S, 7,

1
q
dp.q.7(V1,10) = {El sup Wp(utl,uf)q]} i

tel0,T]
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McKean-Vlasov Equation VIII

@ Consider p = 1 and using the Kantorovich-Rubinstein dual formula
(see Villani (2003)),

1
q
di,q,7(v1,10) = {E [ sup Wl(’/ga’/?)q]}

te[0,T]

q
= {E [ sup (sup (x) (I/tl(dx) - Vf(dX))) ] }
te[0,T] \peR1 /R"

where R is the set of Lipschitz functions ¢ : R” — R with the
Lipschitz coefficient

1
q

609~ o)l _

[¢llLip ;= sup
x,yERM x#£y ‘X - )/|
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McKean-Vlasov Equation IX

o In the metric (56), R1 can be replaced with R? which is the set of
bounded functions ¢ € Rq, see Villani (2003).

@ We can further reduces the set Ry in the metric di ¢ 7 to the set
Rf’l which is the set of Lipschitz functions ¢ : R” — R with
|¢llLip + [|#]loc < 1. In other words, we have an non-decreasing sets:

R C RE C Ry
@ The metric d; 4 7 with R; replaced by Rll”l becomes that

de 1(v1,12)
7Y 5

=< E | sup sup /n o(x) (th(dx) - l/f(dx))

te[0,T] (ZSERS’I
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McKean-Vlasov Equation X

@ The distance dBL 1 is called Fortet-Mourier distance (see Section

11.2 of Dudley (2004) page 390).
e Then (S1,4,7, dl’qj) is a complete metric space.

@ Therefore, we introduce the following 1t6 SDE: for xg € R" and
Ve Sl,%T'

t t
X;(O’V =Xp + / b(X;@’Va (1/5, P))ds +/ U(X;w/, <V57p>)dWs- (68)
0 0
@ Let us define that
L¥(dx) = /R E |60 (0%)| po(dxo) (69)

@ Question: For any v € &1 4 1, provide a mild condition on pg € P(R")
under which L” = (LY).c[o, 7] belongs to S1 4,7
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McKean-Vlasov Equation Xl

@ Question: Under the above Question with the assumption (A ),
prove that LY : 81 5 7 — S1,4,7 admits a fixed point yi. In other
words, we have

" = p, under (Sy1q.7, dEI‘;’T). (70)
@ Based on the fixed point (70), for f € C§°(R"),
t
(e ) = (L) = (o, F) [ (L2, A0 Fyds={po, F1 (e, AP F)ds
0

@ Then, we have

Existence of McKean-Valsov equation: The above fixed point u € Sy 4.7
given by (70) is a solution of McKean-Valsov equation (67) with 1o = po. J

@ Question: Establish the propagation of chaos for McKean-Valsov
equation (67) with 1o = po.
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© Replicator-Mutator Equations
@ Mathematical Model of Evolutionary Branching
@ Mean-Field Approach for Replicator-Mutator Equations
@ Extended Replicator-Mutator Equations
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Mathematical Model of Evolutionary Branching
Mathematical Model of Evolutionary Branching |

@ Charles Robert Darwin (1809-1882): English naturalist whose
scientific theory of evolution by natural selection became the
foundation of modern evolutionary studies.

Figure: Charles Robert Darwin
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching Il

@ In 1859, Darwin published “On the Origin of Species by Means of
Natural Selection". The book immediately became controversial.
http://darwin-online.org.uk/

Chapter 1. Veriation under Domestsccom.
I: Vartaton Under Naturl

(B3]

TR, XTI
Ti: Stru for Ewstence —
w: Nuﬁﬁi Selection o
VV; Dﬁfmml/;’n"“;'m ;t—a SARRTIRRS
W; Tastack M BE BARRTRER
Vi Hybridisn . I
D xt Inorfecionof the Guologind | T2
X: O the GeoLogical Su cassion. 04 o —
Ovgenic. Beings BB TR ORI
3 R i EEE
;(Gm q'wg""d"“l D%m AR R
s ik . 'y T B CHRCRITRS
XL Matual A-Kuﬁﬂ ’f' OTgpic &”‘0“ B R LR
m?‘"’bﬁ- gﬂb’,ul‘”: BH=mwEsH (@)
I“IA*OA,_ Tgens BHOE EMNEEFERR
Xty Rnﬂlfl tulax.m P Gmdusim BEE S

Figure: Book: “Origin of Species"

[} = = v
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Mathematical Model of Evolutionary Branching
Mathematical Model of Evolutionary Branching IlI

@ Recently, the 2019 Novel Coronavirus, or 2019-nCoV outbreak in
Wuhan.
@ The recently emerged 2019-nCoV is not the same as the coronavirus

that causes Middle East Respiratory Syndrome (MERS) or the
coronavirus that causes Severe Acute Respiratory Syndrome (SARS).

@ However, genetic analyses suggest this virus emerged from a virus
related to SARS.
@ There are ongoing investigations to learn more. This is a rapidly
evolving situation.
BHCRE, ZRTESRRSNAFNEREIETRAR. LR, BIEAT
—NEBRRSEEAE, ARXNMESEOR, RERNFHARBELLRESNS
3, MARRNENARAEERRESNS R, NMsEIHomEhmL.
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Mathematical Model of Evolutionary Branching
Mathematical Model of Evolutionary Branching IV

ERPERBERRSBEAFRUTH SRR SFERRTE, BSNERERFF
N, BLRSEESHIRERR, NS SEREMINEERRERL, 1R
XitRsRRMEB HEIEEARIBERANE, BARBRATESHE—LT K,
I hEREFR LB ER AR RHEADTIAN BRPRE TRIRIEHEE
R SAIEIMETT20035FH) SARARS, A EEBETSARSRS, LI
RERRERORET, EANERK, XMRSHRSTEEMES, NXI9ERE
SR, MANEEHERERRRE, BRERINERZE.

Figure: Replication and Mutation of 2019-nCoV.
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching V

Figure: Coronavirus and its replication

@ We next introduce a mathematical model for describing a molecular
evolution.

o Consider first two species (e.g. two types of viruses) {1,2}:

@ For i =1,2, let X/ > 0 be the population size of the species i at time
t>0.
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Mathematical Model of Evolutionary Branching
Mathematical Model of Evolutionary Branching VI

Let r; > 0 be the fitness or replicating rate of the i-th species, i.e.,

e every rl generations replicates once.
i

Then, we have, for i = 1,2,

dx;

Assume that the scale of the population is finite and conservative.

Make a normalization s.t. X} + Xt2 =1.

@ We have the following system of equations as follows: for i = 1,2,

dXi .
d—tf = X/(r; — g(Xt,r)), t>0. (72)
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching VII
@ The term g(x,r) is called
Average Fitness Function: for (xi,x) € S and r = (r1, ) € R,
g(x,r) == nxi + rnx.

Here S, is a simplex, i.e., Sy := {(x1,%2) € Ri; x1+x = 1}.

e Taking the mutation into Replicator Equation (72).

Let g;; be the probability of the type i mutating to the type j.

@ Then, we have, for i = 1,2,

dX! ;
t 1 2 i
= nX; quj + nX; q2i —X;g(Xe, r)
dt —_—
no mutation 2 mut. to 1
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Replicator-Mutator Equations Mathematical Model of Evolutionary Branching

Mathematical Model of Evolutionary Branching VIII

e Extending it to the general N types of species:

Replicator-Mutator (RM) Equation: For i=1,..., N, and t > 0,

dxi XL .
dtt =Y riXigi — X{g(Xe,r). (74)
=1

Initial Behavior: 3N, X5 =1

Average Fitness Function: g(x,r) = SN rix; for (x,r) € Sy x RY.
Mutation Matrix: Q = (qj)-

@ Question: Solve RM equation (74). Make a transform
YE' = Xl exp(f5 g(Xs, r)ds). Then dYE' =N, rYE/ qjdt, ie.,
dY,_ﬁg = (r/)NXNQYtgdt.

@ Question: How to estimate r; and gj; using RM equation (74)?
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Mathematical Model of Evolutionary Branching
Mathematical Model of Evolutionary Branching IX

Qolauior Csgeuinn difppentol
b
A = 2} Wl - 3> % ftn=Tan

] I\ e Chong
\u\\““""“
heSavsor R wad

Copecit)  (fitness)

Figure: Summary of Replicator-Mutator Equations
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Mean-Field Approach for Replicator-Mutator Equations
Mean-Field Approach for RM Equation |

@ We next introduce a Mean-Field approach for modifying RM equation
in the study of the evolution of RNA virus populations in the
following paper on PRL.

VOLUME 76, NUMBER 23 PHYSICAL REVIEW LETTERS 3 JUNE 1996

RNA Virus Evolution via a Fitness-Space Model

Lev S. Tsimring and Herbert Levine
Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402

David A. Kessler

Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
(Received 16 January 1996)

Figure: Paper on PRL: A Mean-Field Approach for RM Dynamics
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Replicator-Mutator Equations Mean-Field Approach for Replicator-Mutator Equations

Mean-Field Approach for RM Equation Il

An important observation: every sequence of RNA viruses can be
characterized by its replication rate r € R. There may be different
sequence which exhibit similar replication rates.

@ Then, we can treat the all sequences which exhibits the similar
replication rates as a population:

o In other words, different r corresponds to different population.

e Forany t >0, let r — u(t,r) is a probability density function on R,
ie., [gu(t,r)ydr=1.

o The solution X/ of RM equation (74) looks like a discrete version of
u(t,r):

N . Fi+1
Sxi=1 s 3 [ uendr—1
i=1 i fi
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Mean-Field Approach for Replicator-Mutator Equations
Mean-Field Approach for RM Equation Il

e Without mutations, the discrete version (71) gives that, the
replication dynamics is given by

Oru(t, r) = ru(t,r).

@ However, the solution r — u(t, r) of the above equation is not a
probability density function:

o A normalization should be made in the above equation as in the
discrete version (72).
o This yields that

deu(t,r) = (r— [ ru(t,r)dr) u(t,r). (75)
(r= [ mte0e)
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Replicator-Mutator Equations Mean-Field Approach for Replicator-Mutator Equations

Mean-Field Approach for RM Equation IV

@ Consider a simple mutation without the underlying genomic transition
rate. Then Mean-Field version of RM equation is given by

RM Equation in Mean-Field Form: For the fitness space given by R, for
(t,r) €[0, T] xR,

Oru(t, r) = U;A,u(t, r)+ (r — /Rru(t, r)dr) u(t, r), (76)

—_———
mutations

replication

u(0,r) =up(r), reR, (77)

where ug(r) > 0 and [ up(r)dr = 1.

@ The solution of RM equation (76) and (77) admits a unique smooth
solution which is studied by
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Replicator-Mutator Equations Mean-Field Approach for Replicator-Mutator Equations

Mean-Field Approach for RM Equation V

e Alfaro, M., and R. Carles (2014): Explicit solutions for replicator-

mutator equations: extinction versus acceleration. SIAM J. Appl.
Math. 74, 1919-1934.

@ Question: Without referring to the paper by Alfaro and Carles (2014),
establish the closed-form solution u(t, r) of RM Equation (76) and
(77) in Mean-Field form.
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Extended RM Equations |

@ Recall that D C R" is domain, which is not necessarily bounded.

@ Consider the following extended RM equation with fitness space D:

Ouu(t.r) = Au(t. )+ (g0)~ [ enuleydy ) u(eir). (79

mutations

replication with fitness function g

u(0,r) = up(r), rebD,

where wug(r) > 0 for r € D and [, up(r)dr = 1.
@ Here, A* is the adjoint operator of the operator A given by: for
f € C3(D),
1
Af(x) = b(x) "V f(x) + §tr[UUT(X)v)2<f(X)]7 x € D.
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Extended Replicator-Mutator Equations
Extended RM Equations Il

o Consider the 1t6 SDE given by: for (t,x) € [0, T] x D,
S S
Xt :X+/ b(X‘f’X)dv+/ o(XE¥)dW,, se [t T
t t

o We assume (A ,) and (Ax) hold. Then, X;* € D for all s € [t, T],
P-as.

Consider the weak solution of the extended RM equation (78), which is
defined as: for all f € C5°(R"),

(u(e), ) = (uo, 1) + [ (uls), (A-+ &)
= /0 (u(s), ) {u(s), f)ds, (79)

where the integral (u = [pu(t,r)f(r)d
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Extended Replicator-Mutator Equations
Extended RM Equations Il

o Relating the weak form (79) of the extended RM equation to the
following FPK equation: for f € C§°(D),

t t
(aes£) = (o, F) + [ (s, (A+ £)F)ds = [ (e, F) (s )05, (80)
where the initial datum pg € P(D).

@ Moreover, let the initial datum pg admit a density function given by
up(r) for r € D, i.e., po(dr) = up(r)dr.

@ Then, for t € [0, T], the solution p+(dr) = u(t, r)dr, where u(t, x) for
(t,x) € [0, T] x D solves the extended weak form of RM
equation (79).

@ We next discuss the well-posedness of FPK equation (80).

@ Question: Establish a solution of FPK equation (80).

@ Hints: Using the It6 diffusion process X,
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Extended Replicator-Mutator Equations
Extended RM Equations IV

@ Question: How to establish the propagation of chaos on FPK
equation (80)?

o Hints: First, you should construct a particle system X' = (X{);co, 7]
related to FPK equation (80).

@ We need to impose the assumption on the fitness function g:

(Ag) (i) g: D — Ris continuous and bounded from above; (ii) there exists
a polynomial Qg : Ry =— Ry such that

lg(x) —g(¥)| < Qz(Ix| + ly)Ix —y|, ¥ x,y€D.

(Ax,) For g > 2, the sequence of initial states of particles (X§)i>1 is i.i.d.
according to pg € P(deg(og)+1)q(D)-
(Abo) ie., (Asp)
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Extended Replicator-Mutator Equations
Extended RM Equations V

@ For the particle system, we let the dynamics of the state process of

i-th particle be
dX] = b(X])dt + o(X})dW}, X} e D.
@ We then introduce the sequence of P(D)-valued process
v S oxexn (J3 g(Xi)ds)

By = % Z:N:l exp (fot g(XSi)dS)
[

pe = iéaxg exp (/Ot(g(Xs’) - (u§7g>)d5) :

@ Note that xN and p are sub-probability measure.
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Extended Replicator-Mutator Equations
Extended RM Equations VI

o Let P*(D) be the set of sub-probability measures on Bp, i.e., for any
p € P5(D), w is a finite measure on Bp such that u(D) < 1.

@ We next introduce the (Alexandroff) one-point compactification.

@ Add one point which is outside of D to D called "x" and define
D, := DU {x}.

@ Let D be topologized by a topology 7, and we then can define a
topology T* for D, as follows:

(i) each open subset of D is also in T*, i.e., T CT*;
(i) for each compact set C C D, define an element Uc € T* by
Uc := (D \ C)U {x}. Let us define a bijection ¢ : P*(D) — P(D,) as:

(p)(A) := (AN D) + (1 — u(D))dx(A),

where A € B(D,) and p € P*(D).
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Extended Replicator-Mutator Equations
Extended RM Equations VII

@ Then, the integral of u € P°(D) w.r.t. a measurable function
f: D, — R is defined as (if it is well-defined):

/ F(x) (1) (dx) = /f 1(dx) + F(*)(1 — (D))
= (u, £) + £(x)(1 — pu(D)).

o Consider pu = (fit)¢eo,7] as an arbitrary P(D)-valued solution of
extended EM equation, and we then define that

[ = exp (/Otws,g)dS) pe, te[0,T] (82)

@ This implies that, for all f € D,

G.) = (o) + [, (A+ @) ds. (53)
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Extended Replicator-Mutator Equations
Extended RM Equations VIII

@ In view of (1.2) and (1.4) in Manita et al. (2015), the following
equivalent representation holds, for all ¢ € C;’z([O, T] x D),

t
(.0t )) = (18,00,)) + [ (1. (0 + A+ )95, ) s
@ We also define that

1
7N .

N " _
de,- exp (/ g(Xs’)ds) :
- 70

=
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Extended Replicator-Mutator Equations
Extended RM Equations IX

@ We introduce the following metrics:

do 7(pt, 1) = sup dpy (B, 1) (84)
te[0,T]
1
‘7:|q

@ Here, Ry is the set of (bounded) Lipschitz continuous functions
Y : Dy — R satisfying ||9)]|oo + [|#||lLip < 1 (where
|¥]|oo = supyep, [¥(x)| and ||¢||Lip denotes the Lipschitz coefficient
of ).

@ Let |- | be the Euclidean norm. Then, we can define a metric d, on
D, as in Mandelkern (1989):

() (™ — i) (k)

= sup sup E
te[0, T]YERL

D
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations X

o fix xo € D and define /(x) := m for x € D. For xq,x € D, define

di(x1,x2) := |x1 — x| A (I(x1) + 1(x2)), di(x,%) := I(x) for x € D, and
d,(*,%) = 0. Then, the Lipschitz coefficient of ¢ (as a seminorm) is
given by

| b))
YllLip = sup .
H H h X1#X2,X1,%0€ Dy dx (Xl* X2)

@ This implies that, for any ¥ € Ry and x1,x2 € D,
[h(x1) —v0e)| < ba — x| A(l(x) +1(x)) < [ — x| (85)

@ In other words, 1) € R is also a (bounded) Lipschitz continuous
function on D with the Lipschitz coefficient being less than one.
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Extended Replicator-Mutator Equations
Extended RM Equations Xl

@ We have that, for all ¢ € R4,

PO)uE" — )(o) = [ Bu0EN - ) ()
Dy D
= <M§7N - M%? w*>, (86)

@ Here 1), (x) := 9(x) — () for x € D. Then v, is a (bounded)
Lipschitz continuous function on D with the Lipschitz coefficient
being less than one.
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Replicator-Mutator Equations Extended Replicator-Mutator Equations

Extended RM Equations XlI

Lemma

Let assumptions (Ajoc), (Ax) and (Ag)-(i) hold. Suppose also that

(Ap,,) there exists a sequence (Dy)xen of bounded domains with
Dy C D such that U2, Dy = D, each Dy has a
C2-boundary; and for each k > 1, oo ' (x) is uniform elliptic
on R" for (t,x) € [0, T) x Dy.

Then, the propagator P f satisfies that, for (s,x) € [t, T] x D,
0:PEsf(x) + (A +g)PEsf(x) =0, PEf(x) = f(x). (87)

Moreover P&f € C12((0,s] x D) N C([0, s] x D), and there exists a
unique classical solution of the Cauchy problem (87).
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Extended RM Equations XllI|

@ We next show the uniqueness of solutions to extended RM equation
using the propagator Pg..

Lemma

Let assumptions (Ax,), (Abs), (Ap,s) and (Ag) hold. Let
= (1t)eejo, ) be a solution of extended RM equation satisfying o = po
and the integrability condition:

sup /\x|deg(Qg)+1yt(dx)<+oo. (88)
te[0,T] YD

Then p is unique.

@ Proof. Let fi = (fit)¢c[o, 7] be another solution with fig = po.
o We then define i := exp(fy (fir, g)dr)fic for t € [0, T].
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Extended RM Equations XIV

@ We first show that
<H§ﬂ/)> = <ﬂ§’¢>’ te [07 T]7 1/} S 7?'1' (89)

o Let s € [0, T] be an arbitrary (fixed) time and define
h(t,x) := PEsyp(x) with (t,x) € [0,s] x D and ¥ € R1.

@ However, h is not in C;’z([O,s] x D).

@ We hence introduce the following cut-off function £ € C§°(R") and it
satisfies that £(x) € [0, 1] for all x € R", and {(x) =1 for |x| < 1;
&(x) = 0 for |x| > 2. Moreover, for N > 1, define {y(x) := &(x/N)
for x € R".

e We have hy(t,x) := &En(x)h(t, x) is in C;’z([O,s] x D). Therefore,
for all t € [0, s],

<:u§7hN(t7')> <M07hN +/ :U’ru at+A+g hN >dr
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Extended RM Equations XV

@ In terms of the definition of hp, it holds that
(0: + A+ g)hn(t, x) = h(t, x)AEn(x) + Vién(x) Too T Vih(t, x).

@ Note that both V)2<£N and V,&y are bounded (the boundedness is
independent of N) and supported on {x; N < |x| <2N}ND.

@ Moreover, for N < |x| < 2N, there exists a constant C (which is
independent of N) such that

1 C
IVxén(x)] = 1 [VxE(x/N)| < X
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Extended Replicator-Mutator Equations
Extended RM Equations XVI

o Let a := deg(Qg) + 1. Then, there exits a constant C (which is
independent of N) such that

h(t, X)Aé‘N(X) + vng(X)TUUTVXh(tv X) ,Uf(dx)
D

<cf 1) (o), (90)

where Dy == {x: N < |x| <2N}ND.

@ Then, by the assumption (88), i.e., sup.cpo, 1] Jp [X|*H¢t(dx) < oo and
the assumption (Ag)-(i), there exists a constant C (which is
independent of N) such that

sup {IXI‘” +1} pf(dx) < C sup {|X|a + 1} pe(dx) < +o0,
tel0,T] t€[0, T]
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Extended Replicator-Mutator Equations
Extended RM Equations XVII

@ This gives that the r.h.s. of (90) tends to 0 as N — oco. Hence

Jim {h(t, ) Aen(x) + Vbn(x) 00T Vh(t,x) } uf(dx) = 0.
—o0 JpD

e This yields that, for all ¢t € [0, ],

(/,Lf, h(t’ )> = Nlr:ni-oo <M§a hN(tv )> = NiToo </’Lg’ hN(Oa )>
= (ug, h(0,-))- (91)
o Note that (u, h(s,-)) = (uf,1) and hence (91) gives that
(Mfﬂ@ = <M§ﬂ h(Oa )> = <P0, h(07 )> (92)
@ The same reasoning yields that
<ﬂ§7w> = <ﬁ§’h(0’)> = <p0ah(07')>' (93)
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Extended Replicator-Mutator Equations
Extended RM Equations XVIII

@ Then, the equality (89) follows from (92) and (93) with the
arbitrariness of s € [0, T]. By choosing ¢ = 1, it follows from (89)
that

t t
exp </0 <M57g>d5> = (uf,1) = (p%,1) = exp (/0 <ﬁs,g>d5>
@ Therefore

(e, V) = (e, ¥), t€]0,T], ¢ € Ry.
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Extended RM Equations XIX

Lemma

Let the conditions of Lemma 28 hold. Then, for any fixed T > 0, it holds
that

N
(15 (ug"™ — g, Ps )

1) =
I:tlé/Texp (/Os g(X[)dr) VXPng(XS'-)TU(Xsi)dWsia (94)

where Ptg +f fort € [0, T] is the propagator.

@ Proof. The key claim is
O (uf, Pﬁ-,-f} =0, foralltel0,T]. (95)
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Extended RM Equations XX

e In fact, for all (t,y) € [0, T] x D,

t S
_Png(y)+/ exp /g(x,Y)dr> (9 + A+ g) PELF(XY)ds
’ 0 0
t s
+ [ exp ( / g(x,y)dr) Vi PELF(XY) o (XY)dWs
O b

t s
exp ( / g(xy)dr) VL PEF(XY) T o(XY)dW.
O b

I
%
\'
P}
=
+
S—

@ It holds again that
t
E [exp ( / g(XSy)ds) pe Tf(x{)] — PE_f(y).
0 9 b
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Extended RM Equations XXI

@ Then, we have

IpE {exp (fo (XS) ds) Pthf(Xy)} po(dy)
fD E [exp (fo g(Xsy)dSH po(dy) ‘

@ This yields from (82) that

<1ut7 Pfo>

W, PErf) = [ 2o ([ g0x)ds) PEAO)] polat)
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Extended RM Equations XXII

Theorem

Let previous assumptions hold. Let ji = (f1t)¢c[o, 1] be the P(D)-valued
solution of extended RM equation and N = (ulN )eelo, 1] be the sequence
of P(D)-valued processes. Then, for any T >0 and N > 1, there exists a
constant C > 0 which is independent of N such that, for any p > 1,
A 1
dq,T(:“’:/LN) <C <Oé(p, q,n, N) + Nq_1> 92 27 (96)
1 _P—9
N~z + N » | q> 73, p#2q;
a(p,q,n,N) = N_%In(l—i—N)—i-N_?, q=13, p#2q (97)
—4 —b=a n n
N=»+ N » 9<3, P# 5
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@ Mean Field Games
@ Deterministic Control Problem
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Deterministic Control Problem |

@ | recommend you the book " Deterministic and Stochastic Optimal
Control" by Fleming and Rishel (1975):

Cﬁnpte_r]: Ttl.t &'tP&st P"M).ﬂ in olaulus

0"" Variatons

ond S 2: The optimed Gutnd problom
—— 3: Exstendt @ Gomtinudy propertd

o of. optimal. Cavtols
4: Dunamic programming.
5: SPE P Marksv Diffusint

proasses
e b: Optimal contral of Morhgy
Diffusion pioeses

Figure: Book by Fleming, W.H. and R.W. Rishel.
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Deterministic Control Problem 11

o Consider a deterministic control problem described as follows:
e Time horizon: T; time variable: t € [0, TJ;
o State function of a controlled system: X;*" € R™; control function uy;

@ The state dynamics of the controlled system is described as: for
(t,x) € [0, T] x R",

s
XE = x + /t b(X: %, u)dr, s €[t T]. (98)

@ b(x,u):R" x U— R" satisfies a uniform Lipschitz condition in U.

@ The function us for s € [t, T] is called a control or strategy, which is
assumed to take values in a compact subset U of R™.

Set of Admissible Controls 2, it is defined as:

Ul = {us:[t, T] = U; s — us is measurable} .
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@ A deterministic control problem can be described as follows:
e Terminal Cost Function g : R" — R;
e Running Cost Function f : R” x U — R.
@ The optimization problem is to find an optimal control u* € U,” that
minimizes the following objective functional:

J(t,x; u™) = inf_J(t,x; u)

uel]

= inf
uel,”

.
g X5 + [ O, us)ds] SNC)

@ Define the value function corresponding to the control problem (99):

T
V(t,x) = uiergT [g(X;-’X’”) —|—/t F(XEv, us)ds] . (100)
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Deterministic Control Problem IV

@ Obviously, the value function satisfies a terminal condition
V(T,x) = g(x).

Dynamic Programming Principle (DPP): For the value function V/(t, x)
defined by (110), and t < s < T, it holds that

V(t,x) = inf

ueld]

V(s, X0 4+ / FIXEY, ) dr (101)
t

which is documented in Bellman (1957): “Dynamic Programming".

@ It is saying that if one knows the value function at time s > t, one
may determine the value function at time t by optimizing from time t
to time s and using V/(-, s) as the terminal cost.

e DPP means that V/(t, x) satisfies a semigroup property, but, which is
running backwards.
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Deterministic Control Problem V

@ Proof of DPP: The proof is based on the following observation on the
admissible control set:

For t <s < T, we have Z/{tT =U; @UST. Here @ means that if
ul:[t,s] = U €Usand v?:[s, T] = U €U/, then ut @ u® is defined
as: for r € [t, T],

U}, re [t,S];
ey =
uf, r€ls, T].

o Then, u:=uvt@v? cld] if u* €U and v? c U] .
@ On the other hand, if u € Z/{tT, then by restricting the domain of u to
[t,s], we obtain an admissible control in U;;
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Deterministic Control Problem VI

e Similarly, by restricting the domain of u to [s, T], we obtain an
admissible control in U/ ;

o Therefore, we proved that U, = U © U/ .
@ By the definition (110) of the value function:

veu]

.
V(t,x) = inf [g(X%X’u)—i— / F(XE™, ug)ds
t

= inf
ueld]

s T
g(Xy )+ [ FOm udr+ [ f(Xf’X’“,ur)dr]
t s

in
u=ul®u?; vtelds, el

s T
g(XF") + / F(XE2U 0 )dr + / f(Xrt’X"ﬂur)dr}
t S

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 214 / 291



Deterministic Control Problem VII

@ Meanwhile, we decompose the state process X**“ into the ones in
the time interval [t,s] and [s, T], i.e., X = X' @ X%

o dXbv' = p(X1¥' u})dr, r € (t,s]; th’ul = x;
o dX2¥ = b(X>¥ u2)dr, r € (s, T]; X2 = X2 = Xtx;

@ Therefore

V(t,x) = inf inf

1 s 2
ultel; u=ul®u?; el x>

s T
[g(x%“) [ o atydr s [ RO, ﬁ)dr] .
t s

2 1

=X
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o Note that X1:¢' depends only on x and u!, not on X2 or u2. Since
the first integral depends only on Xb4' and ul, this may be
rearranged as:

utelds

2,u? T 2,u2 2
+ inf gwf)+/fwﬂﬂww
weul, x> =xivt s

:iM[/fM“ Ydr + V(X1 ﬂ

viels

S
vw@:im{/waMMm
t

— inf U FXESY 0, )dr + V(XI5 )].
ueL{T
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Deterministic Control Problem IX

e If the value function V/(t,x) is C11, then we have the following

Hamilton-Jacobi-Bellman (HJB) equation: The value function satisfies
that

OtV(t,x)+ H(VxV(t,x),x) =0, (t,x)e€[0,T)xR" (102)
V(T,x)=g(x), xeR"

where H(p, x) for (p,x) € R” x R" is called Hamiltonian, which is defined
as:

H(p,x) := Jrenlcj {b(x, u)'p+ f(x, u)} .
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@ Proof. Using DPP, for a sufficient small h > 0,
t+h
V(t,x) = inf |V(t+ h XS5 +/ FIXES ) dr | .
ueutth t

@ However, it holds that

t+h
V(t 4+ XESS) = V(Ex) + /t B(XTY, u,) TV, V(r, XE5) dr.

@ When T — oo, the finite control problem becomes an infinite horizon
control problem, which is formulated as:

J(x; u*) = inf_J(x;u)

ueld®

= inf
ueU®

/ e (XY ug)ds| . (103)

t
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Deterministic Control Problem XI

@ Then, we have that

Value Function: For x € R”,

V(x) = inf / e NS F(XOx, us)ds} . (104)
ueUs |Jo
DPP: For t < s, it holds that
s
V(x) = inf [e’\SV(XSO’X’”) +/ e MF(XOxu ur)dr] (105)
ueUs® 0
HJB Equation: For x € R”,
H(V,V(x),x) = AV(x) =0 (106)
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Deterministic Control Problem XllI

@ We next illustrate the HJB equation approach in terms of calculus of
variations rather than optimal control:

Let L(g, x) be the Lagrangian, which is a sufficiently smooth function in
g,x € R". Fix two points x, y € R", and consider the class of admissible
trajectories connecting these points: for t > 0,

uz” = {6 € CH([0, th R"); 6(0) = x, (1) =y}

The basic problem of the calculus of variations is to find the optimal curve
o* e U st

t

J(@*) = inf J(¢):= inf L(¢(s), o(s))ds

SEUTY st Jo
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@ Now assume that ¢* exists and we want to see what is the property
satisfied by ¢*.

Euler-Lagrange Equation: The optimal curve ¢* € U, satisfies that, for
r €0, 1],

%[VqL(é*(r)y " ()] = VxL(¢*(r), ¢*(r)). (107)

e Proof. Let 1) € C1([0, t];R") with ¥(0) = 1(t) =0, i.e., 1 € UXP.

o Define ¢°(r) := ¢*(r) + sy(r) for r € [0, t] and s € R. Hence
»° € Uy,
o Define also that ®(s) := J(¢°). We next compute ®'(s) for s € R:
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@ Recall that
t . .
O(s) = [ L™ (1) +50(1). 67(1) + ()
o Therefore, by setting rs := ¢*(r) + st(r),

/ [VoL(rs) T4 (r) + Vil (rs) To(r)]dr.

@ Using integration by parts, we have
[ Vate) i) = Tat ) )| L~ [Tk e
--[s E[VqL(r)] v(r)dr.
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@ Thus, it holds that
/ ‘ T d T
9(5) = [ {Vul()" = ZVal(r)]T pu(r)ar,
@ Since ¢* € U is a minimizer of J(p) over ¢ € Uy, we have
/(0) = 0.

@ This yields Euler-Lagrange equation (107).

@ We next connect the Euler-Lagrange equation to the so-called
Hamilton equation.

Let p € R" and x € R" be given. Assume that the equation V4L(q,x) = p
in the unknown g has a unique smooth solution g(p, x) € R".
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o Define the Hamiltonian as H(p, x) := pq(p, x) — L(q(p, x), x) for
(p,x) € R" x R".

o Let ¢*(r) for r € [0, t] be the solution of the Euler-Lagrange equation
(107).

@ Question: Prove that ¢* satisfies the Hamilton equation: for
relo,1],

¢*(r) = VpH(p(r), " (r)),
(108)
p(l’) = _VXH(p(r)7 ¢*(r))
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Stochastic Control Problem |

@ Consider the following controlled diffusion process described as: for
(t,x) € [0, T] x R",

Xt :X+/ b(xrfzx7u,)dr—|—/ o(XE, u)dW,, s € [t, T].
t t
(109)

@ Here, b(x,u) :R" x U— R" and o(x,u) : R" x U — R™"™.

@ The control (Ut)te[o,T] is a progressively measurable process, valued
in UCR™.

@ We impose the assumption on the coefficients (b, o):

(A.) b, o satisfy a uniform Lipschitz condition in U: for any x,y € R" and
ue U,

|b(x, u) = b(y, u)| + |o(x,u) — oy, u)| < Lx = yl,

for some K > 0.
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Stochastic Control Problem Il

@ Denote by U the set of control processes (ut).c[o, 7] such that

.
EV (16(0, ue)[? + |(0, ue)2)dt | < oo.
0

@ We next introduce the objective functional:

Terminal Payoff Function: g : R" — R is measurable and satisfies a
quadratic growth condition:

(Ag) ie., |g(x)] < K(1+ |x|?) for all x € R,

Running Payoff Function: f : R" x U — R is measurable and satisfies a
quadratic growth condition in x:

(Ar) ie., |F(x,u)] < K(1+ |x[2) + I(u) for all (x,u) € R" x U,

where /: U — R, is a positive function.
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Stochastic Control Problem Il

Stochastic Control Problem

@ We next introduce the admissible control sets:

Admissible Control Set: For (t,x) € [0, T] x R", denote by U; x the subset
of controls (ut).epo, 7] € U such that

< 0.

)
E [ |1 X s
t

@ Question: Under the assumption (Ar), prove Uz x # 0.
Value Function: For (t,x) € [0, T] x R",

V(t,x):= SGLLJ{p J(t, x, u)
u t,x

-
= sup E [g(X%X)—i—/t f(s,Xg’X,us)ds]. (110)

Ueut,x

v
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Stochastic Control Problem [V

e For any (t,x) € [0, T) x R", if there exists u* € Uy » such that
V(t,x) = J(t,x, u*™), then u* is called an optimal control.

Markovian Controls: For any u € Uz x, if there exists a measurable
function u : [0, T] x R" — U such that us = u(s, X2) for s € [t, T]. J

@ Optimal Markovian Control: the optimal control u} = u*(s, Xs7").
Here X'** satisfies SDE (99) with u replaced by u*.

o We next introduce the dynamic programming principle (DPP), which
is a fundamental principle in the theory of stochastic control.
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Stochastic Control Problem V

@ To this purpose, let 7 € T; 7 be the set of stopping times taking
values on [t, T].

Theorem (Stochastic Version of DPP)

For (t,x) € [0, T] x R", it holds that
V(t,x)= sup sup E l:V(T,X:’X)—F/ f(s,Xst’X,us)ds},
u€ly x T€T:, T t

V(t,x) = sup inf E l:V(T,X:’X)-F/ f(s,Xst’X,us)ds}.
t

Ueut,x 7—67;,7_

@ Proof. For any u € Uy, i.e., uis an admissible control, using the
pathwise uniqueness of SDE (99),

X0 = XTX" s> reTiT. (111)
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Stochastic Control Problem VI

@ Then, for any 7 € T¢ 7, using (111),

J(t,x,u) = El (th)—i—/ (s, X3, us ds+/ s, X2~ us)dsl

ll
| e s

sy
st

—E [J XE u)+/ f(s,x:X,us)ds]
t

E

g(X5%) +/ Xst’x,us)ds+/ f(s, X5, us)ds

g(X3) +/ f(s, XE*, us)ds|F

@ Since J(t,x,u) < V(t,x), it holds that

J(t,x,u) < E[ X;’X)—i—/ f(s,X;’X,us)ds] V1 eTT.
t
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Stochastic Control Problem VII

@ Therefore, for all u € U,

J(t,x,u) < inf E {V(T,Xf’x)Jr/ f(s,Xst’X,us)ds}
€Tt T t

< sup inf E{V(T,X;’X)—F/ f(s,Xst’X,us)ds}.
Ueut,xTEﬂvT t

@ This yields that

V(t,x) < sup inf E [V(T,Xf’x)+/ f(s,Xst’X,us)ds].
ueldy  TETe,T t

@ On the other hand, fix some arbitrary admissible control u € U; x and
T E 7;77'.
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Stochastic Control Problem VIII

@ By the definition of the value function, for any € > 0 and w € Q-a.s.,
there exists u“(w) € U, xtx (., Which is an e-optimal control for
i (w)

V(7(w), X5\ (w)), ie.,

7(w)

V(T(w),Xt’X (w)) —€e< J(T(w),Xt’X)(w), ut(w)). (112)

T(w) 7(w
@ Let us define that

u(w), telo,7(w)];
e (w) == (113)
u(w), te€[r(w), T].

@ Warning: Measurability issue on &I € U; x: but it can be shown by the
measurable selection theorem.
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Stochastic Control Problem IX

@ Then, by (112), we have
V(t,x) > J(t,x, 1) = E [J(T, X5, u) + /t " (s, XE¥, us)ds]
> E [V(T, XEX) + /; f(s, X2, us)ds} —e
@ By the arbitrariness of u € U; x, 7 € Tr.7 and € > 0, we get

V(t,x) > sup sup E [V(T,X;’X)—F/ f(s,X_f’X,us)ds].
ueut,x TE'ﬁ;T t

@ Thus, we complete the proof of DPP.
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Stochastic Control Problem X

@ DPP can yield the Hamilton-Jacobi-Bellman (HJB) equation:

HJB Equation: If the value function V € C1?, then V satisfies the HJB
equation given by: for (t,x) € [0, T) x R”,

d:V(t,x) + H(x, V, V(t,x),V2V(t,x)) =0, (114)
V(T,x)=g(x), xe€R"

where the Hamiltonian H(x, p, M) for (x,p, M) € R" x R"” x R™" is
defined as:

1
H(x, p, M) := sup |b(x,u) p+ §tr[aa—r(x, u)M] + f(x,u)] .
uel
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Stochastic Control Problem Xl

@ Theorem VI.6.2 in Fleming and Rishel (1975), page 169 proves the
well-posedness of HIB equation (114) when o(x, u) = o(x), i.e., the
volatility of the controlled process is independent of the control u:

o Let Q=1(0,T) x R™,

) The policy space U C R™ is compact.
(b) b(x,u) = b(x) + o(x)8(x, u).

) b,o € C3(R"); 0,0~ and oy, by are bounded in R”;
6 € CYH(R" x U), 6,0, are bounded.

(d) f € CHR" x U), f, f, satisfy the polynomial growth condition.
(e) g € C?(R"), g, g« satisfy the polynomial growth condition.

Theorem (Well-posedness of Smooth Solution of HJB Equation)

Under assumptions (a)-(e), the HJB equation (114) admits a classical
solution with polynomial growth.
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@ We first introduce the framework of backward stochastic differential
equation (BSDE).

@ For this purpose, define the following space for stochastic processes:

Space S: the set of R-valued progressively measurable processes
Y = (Yt)¢tepo,1] such that

El sup |Y¢P| < o0, p>1.

te[0,T]
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Backward Stochastic Differential Equations Il

Space H’; +: the set of R™-valued progressively measurable processes
Z = (Zt)tefo, 1) Such that

T
E / | Z¢|Pdt
0

@ Given a real-valued r.v. £ and a random mapping
f:Qx[0,T] x R xR™ — R, assume that
(ABspeo) € € LA R);
(Agsper) Write f(t,y,z) = f(-,t,y,z), it is progressively
measurable for all (y,z) € R x R™; f(t,0,0) € H%}T;
f(t,-,-) is Lipschitz in (y, z) uniformly w.r.t. (t,w), i.e.
there exists a constant K s.t., dt ® P-a.s.,

< 00, p>1.

[f(t,y1,21) — f(t,y2,22)| < K[ly1 — y2| + |z1 — 22]]
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Backward Stochastic Differential Equations Il

@ The standard BSDE is given by

One-dimensional BSDE: For a terminal horizon T > 0,

dY, = —f(t, Ys, Z¢)dt + Z, dW,, (115)

Theorem (Well-posedness of BSDE)

Given (&, f) satisfying (Asspeo) and (Assper), then BSDE (115) admits
a unique solution (Y,Z) € ST x H2, 1

@ Proof. Use a fixed point argument.
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o Let (U,V) € X :=8% x H%n,T- Then, we define a square-integrable
martingale by assumptions (Agspeo) and (Agsper) as:

Mt::E

.
£+ / (s, Us, Vs)ds’]-"t]
0

@ The martingale representation theorem yields that, there exists
Z € H3, 1 such that

t
Mt:Mo+/ ZTW., telo, Tl
0
e Given Z € anyT above, we then define

T t
Yt = E 5 +/ f(S, US7 Vs)ds‘ft] = Mt - / f(57 U57 VS)dS
t 0
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Obviously, we have Y7 = £. Then, we can summarize that

t t
Y; :g+/ Z W, —/ f(s, Us, Vs)ds. (116)
0 0

Accordingly, we define a mapping ® on X as follows:

(Y,Z)=o(U, V).

By BDG inequality, we obtain (Y,Z) € X, ie, ®: X — X.

Therefore, (Y, Z) is a solution of BSDE (115) if and only if (Y, Z) is
a fixed point of .
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@ We next prove that ¢ : X — X is a contraction mapping on Banach
space X with norm given by

1
2

.
1Y D)l = {E VO (| Ysf? + !Zs\z)dSH

by taking a suitable parameter A € R.
@ Question: Prove ® : X — X is a contraction mapping.

o By (116), £ = £+ [y ZJdW, — [} f(s, Ys, Zs)ds. Then, making
difference between it and (116) to get that (Y, Z) is the solution of
BSDE.

@ Thus, we complete the proof of the theorem.
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Backward Stochastic Differential Equations VII

@ We next introduce comparison principles of solutions of BSDE (115).

Theorem (Comparison Theorem)

Let (&', f") satisfies assumptions (Agspeo) and (Agsper) for i = 1,2. Let
(Y, Z") be the solution of BSDE (115) with (&', f7). Assume that

(i) & <€, as;
(i) f1(t, Y&, ZL) < f2(t, Y}, Z1), dt ® dP-a.s.
(”I) fz(t? Ytl?Ztl) = H?n,T'
Then, Y} < Y2, for all t € [0, T], P-a.s.

@ Question: Prove Theorem 34.
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@ Question: Consider the following linear BSDE:

dYy = —(A:Ye + Z B 4+ C)dt + Z, dWw, (117)
Yr=¢.

where A = (A¢)ecpo, 1], B = (Bt)tejo, 1] are bounded progressively
measurable processes and C = (Ct)cpo, 7] € HiT. Then

Y, = X lE

.
XT§+/ XsCsds‘]-“t],
t

where the process X = (Xt)te[o,T] satisfies the following forward
linear SDE:

dXe = Xe(Ardt + B/ dW;), Xo =1,
e, Xe = E( [y Asds + [; B dWs).
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o Consider the following assumptions:

(Anpys) The deterministic function
f(t,x,y,z): [0, T] x R" x R x R™ is continuous, it
satisfies a linear growth condition in (x,y,z) and a
Lipschitz condition in (y, z) uniformly w.r.t. (t,x);
(AnFYphi) The function ¢ : R” — R is continuous and it satisfies a
linear growth condition.

e Consider the semilinear Cauchy problem: for (t,x) € [0, T) x R”,

dru~+ Au+ f(t,x,u,0' Vyu) =0, (118)
u(T,x)=¢(x), xeR"™

@ We next introduce the following forward-backward SDE as follows:

dYs = —f(s,Xs, Ys, Zs)ds + Z] dW;, s € [t, T], YT = ¢(X71).
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@ The forward SDE is given by

dX; = b(Xy)dt + o(X)dW,, s et T,

where the generator of X is A.
For (t,x) € [0, T] x R", consider

s s
X =x+ [ bOXE)dr+ [ o(XiT)aWs, s €6, T
t t

Let (Y&, Z&™)se(e, 1] be the above BSDE with X5 = X for
set, T

@ Then, u(t,x) := Y{™ is a deterministic function on [0, T] x R".

Note that u(T,x) = Y7 = ¢(X1 ™) = ¢(x) for x € R".
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@ Using Markov property of X and the uniqueness of the solution to
BSDE, we have that
Yt = U(t,Xt), t e [07 T] (119)

@ Then, the function u(t, x) in (119) is in fact related to the solution of
the semilinear Cauchy problem (118):

Viscosity Solution of Semilinear Cauchy problem (118): u(t,x) := Y{ is
continuous on [0, T] x R" and it is a viscosity solution.

@ Now, assume that u(t, x) is a classical solution of the semilinear
Cauchy problem (118), and it also satisfies a linear growth condition.
Moreover, |V u(t,x)| < K(1+ |x|P) for K,p > 0.
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@ Using Itd formula to u(t, X;), we have
Let t € [0, T] and define
Yt = U(t,Xt), Zt E O'(Xt)TvXU(t,Xt) (120)

is the solution of BSDE.

@ Question: Prove (120).
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@ Recall the controlled diffusion process given by: Xo = x € R”, and
dXt = b(Xt, Ut)dt + 0'()(1'7 Ut)th, t € [07 T]
@ One wants to maximize the following objective functional given by

Objective Functional: For x € R"” and u € U,

J(u) =E

g(X7) + /OT F(t, X, ut)dt] .

@ We impose the following assumptions:

(Asmprg) The terminal payoff function g : R” — R is a concave C!-
function; The running payoff function f : [0, T] x R” x U — R is
continuous in (t,x) for all u € U; f, g satisfy a quadratic growth in x.
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@ We next introduce the so-called generalized Hamiltonian:

Generalized Hamiltonian: T1: [0, T] x R” x R" x R"*™ x U — R, which is
defined as:

n(t, x,y, z,u) :== b(x, u)Ty + tr[o(x, u)Tz] + f(t,x, u). (121)

@ Then, the controlled diffusion process can be rewritten as:
dXe =V, [(t, X¢, Y, Z¢, ug)dt + o( X, ug)dWe, t € [0, T].
@ We further assume that the gradient V,[(t, x,y, z, u) exists.
The Adjoint Equation: it is the following BSDE given by, for u € U,

dYt = —Vxﬂ(t,Xt, Yt, Zt, Ut)dt + thWt, t e [0, T], (122)
YT == ng(XT).
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@ Then, the stochastic maximum principle is given by

Theorem (Stochastic Maximum Principle)

Let u* € U and X* be the controlled diffusion process with control u*.
Assume that there is a solution (Y*, Z*) to the adjoint equation (122)
such that, for t € [0, T], P-a.s.,

(e, X5, Y, Z5, up) = sup N(t, X{, Y, Z;, u),
uel

and (x,u) — N(t,x, Y, Z;, u) is a concave function for all t € [0, T].
Then u* is an optimal control, i.e., J(u*) = sup ¢y J(u).

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 250 / 291



Stochastic Maximum Principle IV

@ Proof. For any u € U, we have
J(u™) — J(u)

=E (XT XT +/ 5 Xs*v : - f(57X57u5))d5] :

@ It follows from the concavity of g that

Elg(X5) — g(Xr)] > E [(X — X1) Vag(X7)]
= E[(x5 - x7)"v7].
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Stochastic Maximum Principle V

@ By It6 formula, we obtain

E[(X;—xr)Tvi|=E [ /0 " - xs)TdY:]

VE VOT YoTd(X: — X5)1+E VOT (0 (X5, u) = 0(Xe, us)) T Z]ds

-
__E V (X2 — Xo)TVaN(s, X2, Y5, Z¢ u*)ds]
0

s§)YTsH» s

+E
0

.
(b(X5, ug) — b(Xs, us))TYs*dS]
;

+E

/0 (o (X2, uF) = o( X, us))TZs*]ds] .
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@ Using the definition of I1, one has
T
E / (F(s, XE, u?) — F(5, Xs, us))ds

T
=E [/ S X;kvys*vz:vu:)_n(“s?XS? Ys*’ZS*’US))dS‘|
0

l/OT — (X, u5))T Ys*ds]

_E[ !
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@ Combing the above equalities, we have
T
J(U*) - J(U) > —E [/ (Xs* - XS)TvXn(57X:7 Ys*7 Zs*v U:)dS‘|
0

.
+E / (I'I(s,X:,Ys*,Z:,u:)—I'I(s,Xs,Ys*,Z:,us))dsl.
0

@ Using the assumption
N(t, X5, YE, ZE, uf) = sup,e N(t, X5, Y, ZF, u), and
(x,u) — N(t,x, Y{, ZF, u) is a concave function, we thus proves the
theorem.

@ Thus, we complete the proof of the theorem.

@ We next establish the relationship between HJB equation and the
stochastic maximum principle.
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@ First, recall the controlled diffusion process described as (109),

for (t,x) € [0, T] x R",

i.e.,

S S
X = x —|—/ b(X}, u,)dr —I—/ (X, u)dW,, s € [t, T].
t t

@ Recall the value function defined by (110), i.e.,
Value Function: For (t,x) € [0, T] x R",

V(t,x):= sup J(t,x,u)
u€Us x

T
= sup E lg(X%X)—F/ f(s,Xst’X,us)dsl.
uGL{t’X t
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@ Recall the HJB equation given by (114), i.e.,

HJB Equation: If the value function V € C1?, then V satisfies the HJB
equation given by: for (t,x) € [0, T) x R",

0rV(t,x) + sup /:I(l“,x7 u, Vi V(t,x), V)z( V(t,x)) =0,
ueU

V(T,x)=g(x), x€eR"

where H(t,x,u, p, M) for (t,x,u, p, M) € [0, T] x R" x U x R" x R"™*" is
defined as:

1
Fi(t, %, 0, p, M) == b(x, ) T+ Strloo (x, u)M] + £(t, x, a).
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@ Then, we have the following connection:

Theorem (Connection between HJB Equation and Maximum Principle)

Let HJB equation has a solution V € C13([0, T) x R") n C([0, T] x R").
Assume that there is an optimal control u* € U for the value function
V(t,x) and X* is the controlled diffusion process with u*. Then

H(t, X, uf, Vi V(t, X)), V2V(t, X))

= sup H(t, X7, u, Vi V(t, X}), V2V(t, X})),
uel

and the pair (Y}, Z;) = (V. V(t, X;), V2V(t, X;)o (X}, u)) is a solution
of the adjoint equation (BSDE) (122).

@ Question: Prove this theorem and discuss that why here we need
Ve cl3,
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o Consider a large system of agents (players) which behave similarly.

@ The interactions among agents (players) are negligible but each
agent’'s actions affect the mean of the population.

o Every agent (player) acts according to his/her control problem by
taking into account other agents (players)’ decisions.

Mean field differential game (MFG) studies the existence of a
representative agent (player) such that the large system of agents (players)
similar to this representative agent when the number of agents (players)
goes to infinity.

@ The seminal work on MFG are:

@ Academics: Lions and Lasry (2007): Mean field games. Jpn. J. Math.
2, 229-260.
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@ Industry: Huang, Malhame and Caines (2006): Large population
stochastic dynamic games: closed-loop McKean-Vlasov systems and
the Nash certainty equivalence principle. Commun. Inf. Syst. no. 3,

221-251.

LARGE POPULATION STOCHASTIC DYNAMIC GAMES:
CLOSED-LOOP MCKEAN-VLASOV SYSTEMS AND THE NASH
CERTAINTY EQUIVALENCE PRINCIPLE*

MINYI HUANG, ROLAND P. MALHAME, AND PETER E. CAINES!

of Me

Principle

Figure: Seminal work on MFG
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@ Two Approaches:

(i): The coupled Hamilton-Jacobi-Bellman with Focker-Planck which
comes from dynamic programming in control theory;

(ii): PDEs and Forward-Backward SDE (FBSDEs) of McKean-Vlasov type
which comes from stochastic analysis.

@ We next provide an example for illustrating a static MFG:

Meeting Game Example: There are N professors who will attend an
important meeting. This meeting will start at time ty (which is known).

o There N professors start from different locations to attend but are symmetric
in a sense that they share the same characteristics (for instant they take the
same distance to the venue or they go with the same speed, etc).

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 261 / 291



Definition of MFG V

But, we have to consider the following factors:

(i) someones are always late, the department chair decided to actually start the
meeting only when the 75% of them gather to the venue.

(i) Each professor given his/her preferences has a target time t; of arrival, for
i=1,...,N.

(iii) Because of unpredictable circumstances (weather conditions, traffic etc),
they actually arrive at the venue at time X;.

Xi=ti+ O',f,', g > 0, f,‘ i.i.d. ~ N(O, 1) (123)

(iv) where, we explain that

@ t; is the desired arrival time which is the control for professor i.
@ o0& models unpredictable events.
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0 laay profester
@ Novmgl professoT

Figure: MFG on meeting
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@ By (i), the actual time T the meeting starts, is a function of the
empirical distribution u¥ of the arrival times X = (X1, ..., Xy),

N
R (dx) = %Z(Sxi(dx), on B(R). (124)
i=1

@ In other words,
T = F(u) = inf{t € (~oo, tol; ul((—oc, t]) = 0.75}.
N

@ The expected cost of professor i is given by: for control (t1,...,ty) € RY,

Ji(tl7"'atf7"'atN)

=E|AXi—t)T+B(X;—T)"+ C(T-X)* |, (125)

reputation cost overdue cost cost of early arrival

where, we note that T depends on the control (t1,. .., ty).
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@ We next give the game formulation:

Game Formulation:
o I: the set of agents (players); |I| = N, the number of players;
o U;: the set of actions (controls) for agent (player) i; U = Uy X -+ - X Up;

o u=(uy,...,un) €U; u_j:=(u1,...,Ui—1,Ujt1,.-.,UN);

o J: the set of payoff functions J : U — R.

Then, we have the following definitions:

Definition (Nash Equilibrium)

Let J; € J be the payoff function of player i. An action (control) u* € U is
called a Nash equilibrium of the game I if and only if for every player
i=1,... 00, Ji(u*) > Ji(v,u*;) for all v € Ui.
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@ We introduce the concept of the best response function:

Definition (Best Response Function (BRF))

For player i = 1,...,|I|, a function B; : U — U; is said to be a best
response of player i to the actions of the other players if for all u € U,

B,-(u) = {u,- e U; J,-(u,-, LL,') > J,'(V, Uf,'), Vve U,} .

@ The fixed point of B:= B; x --- x By : U = U:

Let u* € U be the fixed point of B : U — U if and only if u* is a Nash
equilibrium of the game I:

o u* = B(u*) = By(u*) x - x By(u*), i.e., Ji(u*) > Ji(v,u* ;) for all v € U;.

@ Example: Prisoners’ Dilemma:

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 266 / 291



Definition of MFG X

‘RAEEE R as0FRE=E A TRISE R FBH)
& (WMerrill Flood) TSR -EFER (Melvin
Dresher) EHEXEIRAIEIS, BREMRZ
{E451855 (Alvert Tucker) AREBRER, 3+
Rl AEERR". APOHIRIEENABEAEL
5, AeEEHEISERER. MEANAEBRELT
5. WHFEEARE, SOALBLEF,;, H—
AE%&, MSE—AREK, WB&EEIZINmIZED
KRR, MAEAARSEMAMR20E; EEHIEE
%, NELEERE, —EHBFMsE. AFREEL
EEENA, BtRFERER, MARRTR
. RESHMHIIENETIESESLEEF.

L.J. Bo (USTC) Selected Topics in Stochastic Analysis Feb. 2020 267 / 291



L.J. Bo (USTC)

Mean Field Games

Definition of MFG XI

Prisoners'
dilemma

<
i
@
=
S
k7]
=
=

Definition of MFG

prisoner B

confess “?mai” ﬂ
silent
confess
7 »
5 years 20 years
remain
silent *é'
20 years 0 year Il 1year 1year
Figure: Game and Nash Equilibrium
Selected Topics in Stochastic Analysis Feb. 2020

268 / 291



Daiiiden ¢ K7€
Definition of MFG XII

@ We next give an example on a game which has no Nash equilibrium:
Matching Pennies: There are |I| = N = 2 players who show each other
simultaneously the face of a coin:

o if the faces they show are the same, then player 2 pays 1 dollar to player 1;

o if the faces they show are different, then player 1 pays 1 dollar to player 2.

e Formulation of this game: U; = U, = {Head, Tail}; The payoff of the
game is

oy 2

Head | Taid
ploy 1 fead [1, -1 [-1,1
Tal |-1,1 1,1

@ Question: Check that this game has no Nash equilibrium.
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@ In order to guarantee the existence of Nash equilibrium, we introduce
the idea of Nash equilibrium in mixed (relaxed) strategies.

Mixed (Relaxed) Strategies: A mixed (relaxed) strategy for player i in a
strategic game is a probability measure p; € P(U;) for his/her actions
(control or strategy) given the actions of the other players.

Definition (Nash Equilibrium in Mixed (Relaxed) Strategies)

We call u* € P(U) = P(MY, U;) a Nash equilibrium in mixed (relaxed)
strategies if Ji(u*) > Ji(u) for all p € P(U).

e If u* € U is a Nash equilibrium, then p* = §,« € P(U) is a Nash
equilibrium in degenerate mixed strategies.

@ Question: Nash Theorem: Prove that “every strategic game with a
finite action (control) set, has a Nash equilibrium in mixed strategies”.
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@ Nash Theorem stresses the importance of the finiteness of the plays.
We next discuss how to deal with the game with the large number N
of players.

@ As we introduced at the beginning of this part, we expect to get a
representative player for is game as N — oo.

A Representative Agent (Player) of Meeting Game: Glivenko-Cantelli
Lemma yields that, if Xi,..., Xy,... are i.i.d., then there exists a
probability measure 1 € P(R) s.t. u¥ = u. Moreover, as N — oo,

sgﬂg ‘,u%((—oo,x]) — u((—oo,x])‘ — 0, P-as.
Consider a simplification: Fori=1,....N, X; = X, t; = t,

e; — €~ N(0,1) and o; — 0 > 0. Then
X =t+oeand Ji(ty,...,tn) = J(t, f(u))

v
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Definition of MFG XV

e We compute the objective functional J(t,f(u)) of the representative
agent by defining T* = f(u):

J(E, T*) = E[AX — to)" + B(X — T*)* + C(T* — X)*]
— AE[(t — to +0¢)*] + BE[(X — T*)Ixs1-]
4 CE[(T* - X)lxer]
= AE [(t — to+oe)T] + BE[X — T*]
+(B+ O)E[(T" = X)Lx<1"]
_ A/ (£ — to + ox) o(x)dx + B(t — T¥)
R

T*—t

+(B+C)/ T (T =t — ox)p(x)dx

—0o0

@ Question: Find a minimizer t* = t*(T*) of t — J(t, T*). Prove that
t*() has a fixed point.
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Interacting Controlled Diffusion Processes |

@ We here give an abstract model for illustrating the construction of
Nash equilibrium of the mean-field differential game by using two
approaches mentioned in previous sections.

e For agent (player) i, the state process with his/her control u' is given
by the following interacting diffusion process with mean field:

dX! = a(X; — X)dt + uidt + o < 1— p2dW] + deS) ., (126)
@ The parameters in (126) satisfy that
The Mean Field Term: X; = % SN | X!; the control u' is an R-valued
progressively measurable process (the set of thus control is given by U');

Brownian Motions: W', i =0,1,..., N are independent (scalar) Brownian
motions; o > 0, p € [-1,1].
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Interacting Controlled Diffusion Processes ||

@ The objective (cost) functional of agent i is defined as: for

(v, ....,uMyeU =ut x - xUuV,

R T .
Ji(ut, . i) = E lg(X%—,XT) —|—/ f(X{, X, ué)dt] . (127)
0

@ The terminal cost function and running cost function are given by

The Terminal Cost Function: for x = (x,...,xy) € RN and X : LN

C
gi(x) = g(x;,%) = 5[? — x,-\2.

The Running Cost Function: For u' € R,
Ju'f?
2
y
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fi(x,u') = f(x;, X, u') ==

; €
—qu'(X — x;) + 5\? — xi?.




Interacting Controlled Diffusion Processes IlI

e The function fi(x, u) is convex in (x, u') if g> <.

@ We next apply the HJB equation approach to find the Nash
equilibrium with finite N:

o To this purpose, let X; = (X},...,XN) for t > 0, and define the
value function of agent i as: for (t,x) € [0, T] x RN and
u™" = (ug")eepo, 1] being fixed

_— T
g(X’T,XT)+/ F(XE, X, uf)de | X, :x].
t
(128)

Vi(t,x) = inf E
( X) u!'gu"
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Interacting Controlled Diffusion Processes IV

@ Then, the value function Vj(t, x) satisfies the HJB equation:

N
m%waHJ&{me—m+M%www

N
0'
#2010 i)

o' |?

P 67
> '(X—X,-)—l—2]x—x,-|2}.

@ The terminal condition V;(T,x) = C\x — x;|? for x € RN,

@ Using the first-order condition w.r.t. u', it follows that
u i (t,x) = q(X — x;) — O, Vi(t,x), i=1,...,N.
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Interacting Controlled Diffusion Processes V

@ In terms of the terminal condition V;(T,x) = %\?— x|, we guess

the value function V; in the following form:
Vi(t,x) = %(y —x))? +pe, teo,TI
@ Here t — 1 and t — u; are deterministic functions with n+ = C and
pr =0.
@ Plugging u*' and the expression of V;(t,x) into the HJB equation,

we obtain

1
Ome =2(a + q)ne + <1 — I\/2> nf — (e — q2),

2
_ (1oL
Ot = > (1-p )(1 N) Nt
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@ The HJB equation approach gives Closed-Loop Equilibria.
@ Question: Apply Stochastic Maximum Principle to find the Nash
Equilibrium, which is an Open-Loop Equilibria.

@ To illustrate the application of Stochastic Maximum Principle to find
the Nash Equilibrium, we discuss a Linear-Quadratic (LQ) model
coming from R. Carmona, Jean-Pierre Fouque and Li-Hsien Sun
(2013) below.
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Approximate Nash Equilibria |

@ The procedure of finding Approximate Nash Equilibrium as N — oo:

Step 1: Fix an (FtWO)te[()’T]—adapted process (m¢).cpo, 7] (being thought of
as a candidate for the limit of X; as N — o0);

v

Step 2: Consider the following control problem of a representative agent
(player) given by:

-
inf £ [g(XT’mT) +/ f(Xe, me, Ut)dt] )
ueld 0

where dX; = a(m; — X;)dt + urdt + o(\/1 — p2dW; + pdWP), and W'
for i >1, W9 and W are independent Brownian motions.
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Approximate Nash Equilibria [l

Step 3: Solving the fixed point problem given by

me = E [Xt|ftW°} , telo,T].

o Note that in Step 2, m = (m¢).cjo,7] is a process. Then, it is
convenient to solve the control problem of the representative agent
using Stochastic Maximum Principle (see Theorem 35):

@ Therefore, the Hamiltonian is given by: for (t,x,y) € [0, T] x R x R
and (z,u) € RZ x R,

M(w, t,x,y,z,u) = a(m(w) — x)y + uy + |:U\/ 1—p?, Jp] z
+ f(X’ mt(w)7 U).

e It is strictly convex in (x, u) under the condition ¢ < e.
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Approximate Nash Equilibria Ill

@ Then, FOC gives that, the optimal control u* satisfies that

an
a:0<:>u*:q(mt—x)—y.

@ The corresponding adjoint forward-backward equations are given by:

dX; =Ny (6, X}, Y7, 27, u)dt + o(y/1 — pPdWe + pdWY);
dY; = =N (t, X7, Vi, Z5, uf)dt + Z72dWP + ZFtdwy,,
YT = Vg(X7),

where ZF = (Z;°, ).
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@ Therefore

dX; = [(a+ q)(me — X;) — Y{1dt + (/1 — p2dW; + pdWR);
dY =[(a+ q) Yy + (e — ¢*)(me — X)|dt + Z72dW? + ZFtdw,,

Yi=C(X: — my).

e Hence, for mYX := E[X;|F] and m) := E[Y;}|F,*], we obtain that

t
= m [ [+ ) (me = mX) — mIds + opWY;

-
m{ =my - / [(a+ q)mY + (e — ¢*)(mY — mY)]ds
+ Z70dwp;
Y

mY¥ = C(m¥ — m7).
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Approximate Nash Equilibria V

@ Question: Prove (129), (130) and (131).

@ By Step 3, we have m; = m{ by the fixed point, and hence m¥ =0.
Thus, we obtain

;
mY = — /t elara)s=t) Z0xgqu0 e [0, T).

o Then, dm; = dmX = —mY dt + podW?.

@ In order to obtain m = (m;)c(o, 1], we have to find Z*9 and this
implies that we need to find the solution (Y*, Z*) of BSDE (130).

@ Now, we assume that the first solution component Y;* of BSDE (130)
has the form given by:

Yo = —ne(me — X7),

where t — 1; is a C'-deterministic function.
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Approximate Nash Equilibria VI

o Plugging it into (130) to have that Z%* = 0 and ZV* = n,0\/1 — p2
with

Oene =2+ q)ne +0f — (= q?), nr=C. (132)
o Therefore m) =0 and hence m; = mX = E[X] + ocpWY.

MFG Strategy with Finite Players: u}’ = (n: + q)(X; — X;"');
MFG Strategy with Infinite Players: u; = q(m; — X;) — Y;".

e Question: Does it hold that Ji(u}™, ..., uf™) = J(u*) as N — c0?

@ We next apply HJB equation approach to find an approximating Nash
Equilibrium:

@ In order to apply HJB equation approach, we assume that Nash
Equilibrium has a Markovian feedback form, i.e. u; = u(t, X¢).
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Approximate Nash Equilibria VII

@ Then, the limiting state process is given by
dXe = a(my — X¢)dt + u(t, X¢)dt + o ( 1— p2dW; + detO) .

@ Here my = E[Xt\.FtWO] by the fixed point in Step 3.

e For po € P(R), define the measure-valued process as:
je(dx) = /R E [dy000 ()| 7] polabo). on B(R).  (133)
o Here X*o for v € P1(R) satisfies that
XY = xo + /Ot a({vs, I) — X20")dt + u(s, X2*")ds

—|—a< 1—p2Wt+th0>. (134)
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® Then, u = (pt)epo, 7] defined by (133) is an (ftWO)te[o,T]—adapted
P(R)-valued process with g = po.

o Hence, (us, 1) = [ E[XO"|F]po(dxo) with I(x) == x.

© The process p1 = (jit)¢efo, 7] defined by (133) satisfies the following
stochastic FPK equation given by

Stochastic FPK equation: for all f € C§°(R),

t t
(e, f) = <po,f>+/0 <us,A“5f>ds+/0 (s, LFYdWD, (135)

where the operators are given by: for v € P1(R),

o2
AV f(x) = [a({v, 1) — x) + u(t, x)]F (x) + 7f”(x);
Lf(x) :=opf'(x), x€R. (136)

v
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Approximate Nash Equilibria IX

@ Question: Similarly to (70), prove the existence of solutions to
stochastic FPK equation (135) using the fixed point argument.
o Let po(dx) = up(x)dx, i.e., up is the initial density function of .

@ Then, pt(dx) = p(t, x)dx where p(t, x) satisfies the following
stochastic forward Kolmogorov equation:

dep(t,x) + A*p(t,x) + L p(t, x)dW2 =0, (t,x) € (0, T] x R;
p(0,x) = up(x), x €R, (137)

where A* (resp. L£*) are the adjoint operator of A (resp. L).

o Question: Write the expression of the adjoint operators A* and L*.
Prove that m: = (¢, I) = [ xp(t, x)dx satisfies that

dm; = podW?, my= / xup(x)dx. (138)
R
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@ Then, by Step 2, we conclude our limiting MFG model for a
representative agent:

The MFG Value Function: for (t,x,m) € [0, T] x R x R,

V(t,x,m) = igLE
u

-

g(X7r,m7) +/ f(Xe, me, ut)dt‘Xt =X, m; = m} .
t

The State Process (X, mt)ieo, 7]:

dX; = a(my — X¢)dt + u(t, Xp)dt + o (\/1 — p2dW; + de?) ;
dm; = podW?. (139)

v

@ Question: Derive the HJB equation of the above control problem of a
representative agent and solve this control problem.
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o If p=0, i.e., there is no common noise in the model, then the above
equation reduces to MFG equation proposed in P.L. Lions’s paper:

o Pierre-Louis Lions (1956-): French mathematician. His research
interest is Nonlinear PDE, he is the recipient of the 1994 Fields Medal.

Figure: Pierre-Louis Lions (1956-)
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